Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 Min Read Turn Supermoon Hype into Lunar Learning
      Caption: The Earth-Moon distance to scale. Credits:
      NASA/JPL-Caltech Supermoons get lots of publicity from the media, but is there anything to them beyond the hype? If the term “supermoon” bothers you because it’s not an official astronomical term, don’t throw up your hands. You can turn supermoon lemons into lunar lemonade for your star party visitors by using it to illustrate astronomy concepts and engaging them with great telescopic views of its surface!
      Many astronomers find the frequent supermoon news from the media misleading, if not a bit upsetting! Unlike the outrageously wrong “Mars is as big as the moon” pieces that appear like clockwork every two years during Mars’s close approach to Earth, news about a huge full moon is more of an overstatement. The fact is that while a supermoon will indeed appear somewhat bigger and brighter in the sky, it would be difficult to tell the difference between an average full moon and a supermoon with the naked eye. 
      A whiteboard illustration of Earth’s Moon at perigee, or closest position to Earth. Credit: NASA There are great bits of science to glean from supermoon discussion that can turn supermoon questions into teachable moments. For example, supermoons are a great gateway into discussing the shape of the moon’s orbit, especially the concepts of apogee and perigee. Many people may assume that the moon orbits Earth in a perfect circle, when in fact its orbit is elliptical! The moon’s distance from Earth constantly varies, and so during its orbit it reaches both apogee (when it’s farthest from Earth), as well as perigee (closest to Earth). A supermoon occurs when the moon is at both perigee and in its full phase. That’s not rare; a full moon at closest approach to Earth can happen multiple times a year, as you may have noticed.
      This activity is related to a Teachable Moment from Nov. 15, 2017. See “What Is a Supermoon and Just How Super Is It?” Credit: NASA/JPL While a human observer won’t be able to tell the difference between the size of a supermoon and a regular full moon, comparison photos taken with a telephoto lens can reveal the size difference between full moons. NASA has a classroom activity called Measuring the Supermoon where students can measure the size of the full moon month to month and compare their results.
      Comparison of the size of an average full moon, compared to the size of a supermoon. NASA/JPL-Caltech Students can use digital cameras (or smartphones) to measure the moon, or they can simply measure the moon using nothing more than a pencil and paper! Both methods work and can be used depending on the style of teaching and available resources. 
      /wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpg This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth. NASA, ESA, CSA, and STScI View the full article
    • By European Space Agency
      Week in images: 25-29 November 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      As the launch of the Sentinel-1C satellite approaches, we reflect on some of the many ways the Copernicus Sentinel-1 mission has given us remarkable radar insights into our planet over the years.
      View the full article
    • By NASA
      Caption: Firefly Aerospace’s Blue Ghost Mission One lander, seen here, will carry 10 NASA science and technology instruments to the Moon’s near side when it launches from NASA’s Kennedy Space Center in Florida on a SpaceX Falcon 9 rocket, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. Credit: Firefly Aerospace Media accreditation is open for the next delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign for the benefit of humanity. A six-day launch window opens no earlier than mid-January 2025 for the first Firefly Aerospace launch to the lunar surface.

      The Blue Ghost flight, carrying 10 NASA science and technology instruments, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. Media prelaunch and launch activities will take place at NASA Kennedy.

      Attendance for this launch is open to U.S. citizens and international media. International media must apply by Monday, Dec. 9, and U.S. media must apply by Thursday, Jan. 2. Media interested in participating in launch activities must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support such as space for satellite trucks, tents, or electrical connections, please send an email by Thursday, Jan. 2, to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      The company named the mission Ghost Riders in the Sky. It will land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the lunar near side. The mission will carry NASA investigations and first-of-their-kind technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. This includes payloads testing lunar subsurface drilling, regolith sample collection, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured also benefits humanity by providing insights into how space weather and other cosmic forces impact Earth.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights.

      As part of its Artemis campaign, NASA is working with multiple U.S. companies to deliver science and technology to the lunar surface. These companies are eligible to bid on task orders to deliver NASA payloads to the Moon. The task order includes payload integration and operations and launching from Earth and landing on the surface of the Moon. Existing CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.

      For more information about the agency’s Commercial Lunar Payload Services initiative, see:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov   

      Wynn Scott / Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      wynn.b.scott@nasa.gov / nataila.s.riusech@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Nov 25, 2024 LocationNASA Headquarters Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
    • By NASA
      An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
      For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
      NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
      The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...