Jump to content

Air Force releases cardio and strength fitness assessment alternatives, new online capabilities


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.
      One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation. Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory. The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology. The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.
      Syncing Up Across the Solar System
      “Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”
      If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.
      Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.
      The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.
      While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.
      Syncing Clocks, Linking Telescopes to See More than Ever Before
      When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.
      “If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”
      The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.
      For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.
      The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.
      An Optical Atomic Clock Built for Space Travel
      Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.
      While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.
      The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman “Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.
      The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.
      “When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”
      The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.
      More on cutting-edge technology development at NASA Goddard By Matthew Kaufman, with additional contributions from Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Communicating and Navigating with Missions Goddard Space Flight Center Technology View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While astronaut Gene Cernan was on the lunar surface during the Apollo 17 mission, his spacesuit collected loads of lunar dust. The gray, powdery substance stuck to the fabric and entered the capsule causing eye, nose, and throat irritation dubbed “lunar hay fever.” Credit: NASACredit: NASA Moon dust, or regolith, isn’t like the particles on Earth that collect on bookshelves or tabletops – it’s abrasive and it clings to everything. Throughout NASA’s Apollo missions to the Moon, regolith posed a challenge to astronauts and valuable space hardware.

      During the Apollo 17 mission, astronaut Harrison Schmitt described his reaction to breathing in the dust as “lunar hay fever,” experiencing sneezing, watery eyes, and a sore throat. The symptoms went away, but concern for human health is a driving force behind NASA’s extensive research into all forms of lunar soil.
      The need to manage the dust to protect astronaut health and critical technology is already beneficial on Earth in the fight against air pollution.

      Working as a contributor on a habitat for NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, Lunar Outpost Inc. developed an air-quality sensor system to detect and measure the amount of lunar soil in the air that also detects pollutants on Earth. 

      Originally based in Denver, the Golden, Colorado-based company developed an air-quality sensor called the Space Canary and offered the sensor to Lockheed Martin Space for its NextSTEP lunar orbit habitat prototype. After the device was integrated into the habitat’s environmental control system, it provided distinct advantages over traditional equipment.

      Rebranded as Canary-S (Solar), the sensor is now meeting a need for low-cost, wireless air-quality and meteorological monitoring on Earth. The self-contained unit, powered by solar energy and a battery, transmits data using cellular technology. It can measure a variety of pollutants, including particulate matter, carbon monoxide, methane, sulfur dioxide, and volatile organic compounds, among others. The device sends a message up to a secure cloud every minute, where it’s routed to either Lunar Outpost’s web-based dashboard or a customer’s database for viewing and analysis.

      The oil and gas industry uses the Canary-S sensors to provide continuous, real-time monitoring of fugitive gas emissions, and the U.S. Forest Service uses them to monitor forest-fire emissions.

      “Firefighters have been exhibiting symptoms of carbon monoxide poisoning for decades. They thought it was just part of the job,” explained Julian Cyrus, chief operating officer of Lunar Outpost. “But the sensors revealed where and when carbon monoxide levels were sky high, making it possible to issue warnings for firefighters to take precautions.”

      The Canary-S sensors exemplify the life-saving technologies that can come from the collaboration of NASA and industry innovations. 
      Read More Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 5 days ago 2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 1 month ago 2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records
      SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag.
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer and Spinoffs News
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Podcast art for Universo curioso de la NASA, the agency’s first podcast in Spanish, which returns for a second season in September 2024. Credits: NASA / Krystofer Kim Lee este comunicado de prensa en español aquí.
      In celebration of Hispanic Heritage Month, NASA is releasing new content for Universo curioso de la NASA, the agency’s first Spanish-language podcast, now in its second season. A five-week season starts Tuesday with new episodes released weekly.
      Listen to the preview of the second season of Universo curioso de la NASA.
      In each episode, Universo curioso highlights the contributions of NASA’s Hispanic and Latino workforce to the agency’s work in Earth and space exploration for the benefit of all.
      “Through the Universo curioso de la NASA podcast, we are thrilled to tell the story of NASA’s efforts to open space to more people from across the world,” said Tonya McNair, deputy associate administrator for NASA’s Space Operations Mission Directorate in Washington. “In the second season, you’ll hear from NASA’s Hispanic and Latino workforce, like flight director Diana Trujillo and astronaut Marcos Berríos, helping lead some of the agency’s most vital space exploration missions and inspiring the world through discovery.”
      Episodes focus on some of NASA’s top missions, bringing the wonder of exploration, space technology, and scientific discoveries to Spanish-speaking audiences around the world. 
      “This podcast highlights NASA’s dedication to making knowledge available to all, regardless of their native language,” said Shahra Lambert, NASA senior advisor for engagement. “By sharing the excitement of NASA’s missions in the second most spoken language in the U.S. and around the world, we are amplifying our outreach and possibly paving the way for a more diverse STEM workforce in the future.”
      The first episode of Universo curioso ran in 2021, as part of the agency’s Spanish coverage of the launch of its James Webb Space Telescope. In 2023, the show was selected as a “Podcast We Love” by Apple Podcasts Latin America.
      Hosted by Noelia González, communications specialist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, listeners are invited to go on a journey to one of Jupiter’s icy moons, hear about the first two years of discoveries of the James Webb Space Telescope, as well as learn about an astronaut from Puerto Rico’s and a Colombian flight director’s path to NASA.
      Episodes will cover the upcoming launch of Europa Clipper in October 2024, a mission that aims to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life.
      A complete list of the new episodes, as well as their release dates, is as follows:
      Tuesday, Sept. 17: Introducing the Second Season Tuesday, Sept. 24 Diana Trujillo: From Cali to the Moon and Mars Tuesday, Oct. 1 Europa Clipper: A Poetic Journey to Jupiter’s Moon Tuesday, Oct. 8 Marcos Berríos: How to Become a NASA Astronaut Tuesday, Oct. 15: Exploring Cosmos with Webb Universo curioso de la NASA is a joint initiative of the agency’s Spanish-language communications and audio programs. The new season, as well as previous episodes, are available on Apple Podcasts, Spotify, and NASA’s website.
      Listen to the podcast at:
      https://www.nasa.gov/universo-curioso-de-la-nasa
      -end-
      María José Viñas / Cheryl Warner
      Headquarters, Washington
      240-458-0248 / 202-358-1600
      maria-jose.vinasgarcia@nasa.gov / cheryl.m.warner@nasa.gov
      View the full article
    • By Space Force
      During CSO Gen. Chance Saltzman’s keynote address at the Air, Space and Cyber Conference, he explained how the service will transform to thrive in a new environment optimized for Great Power Competition.

      View the full article
    • By Space Force
      As Delivered by Chief of Space Operations U.S. Space Force Gen. Chance Saltzman on September 17, 2024
      View the full article
  • Check out these Videos

×
×
  • Create New...