Jump to content

Recommended Posts

Posted

Are aliens watching us? For decades humans have searched and wondered about extraterrestrial and planet life beyond earth. Well now, scientists have created a list of planets where, if they exist, curious aliens could view our planet. 


aliens%2Bwatching%2Bus%2Bexoplanets.jpg

There could be as many as 29 potentially habitable worlds 'perfectly positioned' where extraterrestrials could have been observing Earth for 5,000 years, according to a new study. 

This would allow the aliens to detect not only signs of life in the atmosphere of our planet but allowing them to listen to broadcasts from the past century since commercial radio stations on Earth began broadcasting into space about a 100 years ago. which means that an alien race 82 light years away would just be hearing broadcasts from the start of WW2, read more here.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This image from NASA’s James Webb Space Telescope shows the dwarf galaxy NGC 4449. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team President Biden has named 19 researchers who contribute to NASA’s mission as recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE). These recipients are among nearly 400 federally funded researchers receiving the honor.  
      Established in 1996 by the National Science and Technology Council, the PECASE Award is the highest honor given by the U.S. government to scientists and engineers who are beginning their research careers. The award recognizes recipients’ potential to advance the frontiers of scientific knowledge and their commitment to community service, as demonstrated through professional leadership, education or community outreach. 
      “I am so impressed with these winners and what they have accomplished,” said Kate Calvin, chief scientist, NASA Headquarters in Washington. “They have made valuable contributions to NASA science and engineering, and I can’t wait to see what they do in the future.” 
      The following NASA recipients were nominated by the agency: 
      Natasha Batalha, NASA Ames Research Center, Silicon Valley, California – for transformational scientific research in the development of open-source systems for the modeling of exoplanet atmospheres and observations  Elizabeth Blaber, Rensselaer Polytechnic Institute, Troy, New York – for transformative spaceflight and ground-based space biology research  James Burns, University of Virginia, Charlottesville – for innovative research at the intersection of metallurgy, solid mechanics and chemistry   Egle Cekanaviciute, NASA Ames Research Center – for producing transformational research to enable long-duration human exploration on the Moon and Mars  Nacer Chahat, NASA Jet Propulsion Laboratory, Pasadena, California – for leading the innovation of spacecraft antennas that enable NASA deep space and earth science missions  Ellyn Enderlin, Boise State University, Idaho – for innovative methods to study glaciers using a wide variety of satellite datasets  David Estrada, Boise State University, Idaho – for innovative research in the areas of printed electronics for in space manufacturing and sensors for harsh environments  Burcu Gurkan, Case Western Reserve University, Cleveland, Ohio – for transforming contemporary approaches to energy storage and carbon capture to be safer and more economical, for applications in space and on Earth  Elliott Hawkes, University of California, Santa Barbara – for highly creative innovations in bio-inspired robotics that advance science and support NASA’s mission  John Hwang, University of California, San Diego – for innovative approach to air taxi design and key contributions to the urban air mobility industry   James Tuttle Keane, NASA Jet Propulsion Laboratory – for innovative and groundbreaking planetary geophysics research, and renowned planetary science illustrations  Kaitlin Kratter, University of Arizona, Tucson – for leadership in research about the formation and evolution of stellar and planetary systems beyond our own   Lyndsey McMillon-Brown, NASA Glenn Research Center, Cleveland, Ohio – for leadership in photovoltaic research, development, and demonstrations  Debbie Senesky, Stanford University, California – for research that has made it possible to operate sensing and electronic devices in high-temperature and radiation-rich environments  Hélène Seroussi, Dartmouth College, Hanover, New Hampshire  – for leading the cryosphere science community in new research directions about the role of ocean circulation in the destabilization of major parts of Antarctica’s ice sheets  Timothy Smith, NASA Glenn Research Center – for achievements in materials science research, specifically in high temperature alloy innovation  Mitchell Spearrin, University of California, Los Angeles – for pioneering scientific and technological advancements in multiple areas critical to NASA’s current and future space missions including rocket propulsion, planetary entry, and sensor systems  Michelle Thompson, Purdue University, West Lafayette, Indiana  – for research in planetary science and dedication to training the next generation of STEM leaders  Mary Beth Wilhelm, NASA Ames Research Center – for achievements in science, technology, and community outreach through her work in the fields of space science and astrobiology  The PECASE awards were created to highlight the importance of science and technology for America’s future. These early career awards foster innovative developments in science and technology, increase awareness of careers in science and engineering, provide recognition to the scientific missions of participating agencies, and enhance connections between research and challenges facing the nation. For a complete list of award winners, visit: 
      https://www.whitehouse.gov/ostp/news-updates/2025/01/14/president-biden-honors-nearly-400-federally-funded-early-career-scientists

      View the full article
    • By NASA
      3 Min Read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
      Cracked mud and salt on the valley floor in Death Valley National Park in California can become a reflective pool after rains. (File photo) Credits: NPS/Kurt Moses In a recently published paper, NASA scientists use nearly 20 years of observations to show that the global water cycle is shifting in unprecedented ways. The majority of those shifts are driven by activities such as agriculture and could have impacts on ecosystems and water management, especially in certain regions.
      “We established with data assimilation that human intervention in the global water cycle is more significant than we thought,” said Sujay Kumar, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-author of the paper published in the Proceedings of the National Academy of Sciences.
      The shifts have implications for people all over the world. Water management practices, such as designing infrastructure for floods or developing drought indicators for early warning systems, are often based on assumptions that the water cycle fluctuates only within a certain range, said Wanshu Nie, a research scientist at NASA Goddard and lead author of the paper.
      “This may no longer hold true for some regions,” Nie said. “We hope that this research will serve as a guide map for improving how we assess water resources variability and plan for sustainable resource management, especially in areas where these changes are most significant.”
      One example of the human impacts on the water cycle is in North China, which is experiencing an ongoing drought. But vegetation in many areas continues to thrive, partially because producers continue to irrigate their land by pumping more water from groundwater storage, Kumar said. Such interrelated human interventions often lead to complex effects on other water cycle variables, such as evapotranspiration and runoff.
      Nie and her colleagues focused on three different kinds of shifts or changes in the cycle: first, a trend, such as a decrease in water in a groundwater reservoir; second, a shift in seasonality, like the typical growing season starting earlier in the year, or an earlier snowmelt; and third a change in extreme events, like “100-year floods” happening more frequently.
      The scientists gathered remote sensing data from 2003 to 2020 from several different NASA satellite sources: the Global Precipitation Measurement mission satellite for precipitation data, a soil moisture dataset from the European Space Agency’s Climate Change Initiative, and the Gravity Recovery and Climate Experiment satellites for terrestrial water storage data. They also used products from the Moderate Resolution Imaging Spectroradiometer satellite instrument to provide information on vegetation health.
      “This paper combines several years of our team’s effort in developing capabilities on satellite data analysis, allowing us to precisely simulate continental water fluxes and storages across the planet,” said Augusto Getirana, a research scientist at NASA Goddard and a co-author of the paper.
      The study results suggest that Earth system models used to simulate the future global water cycle should evolve to integrate the ongoing effects of human activities. With more data and improved models, producers and water resource managers could understand and effectively plan for what the “new normal” of their local water situation looks like, Nie said.
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jan 16, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
      Earth Global Precipitation Measurement (GPM) Goddard Space Flight Center Moderate Resolution Imaging Spectroradiometer (MODIS) Water & Energy Cycle Explore More
      4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories
      From peering into hurricanes to tracking El Niño-related floods and droughts to aiding in disaster…
      Article 11 months ago 4 min read NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss
      Article 7 months ago 4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…
      Article 2 months ago View the full article
    • By NASA
      Supporting the International Space Station is an around-the-clock responsibility for NASA and its international partners. This means there is always a team of flight operations and payload personnel working with the orbiting laboratory’s crew – including overnight, on weekends, and during the holidays.

      At Johnson Space Center’s Mission Control Center (MCC) in Houston, flight directors organize fun activities to help these teams build camaraderie and celebrate holidays while they work, no matter the hour.

      “Working in mission control is a very rewarding job, but it also demands a lot from flight controllers and leads to time away from family,” said Fiona Antkowiak, a flight director in the MCC. “We really want to make the holiday shifts in MCC extra special.”

      Fiona Antkowiak (front right) and her Orbit 3 shift team members show off their holiday cookie creations in the Mission Control Center (MCC) at NASA’s Johnson Space Center in Houston. Image courtesy of Fiona Antkowiak Antkowiak recalled working Christmas 2018 as a space station flight controller. That year, teams participated in a friendly cookie-decorating competition, with the three different MCC shifts going head-to-head. When flight directors started brainstorming festive ideas for the 2024 holiday season, Antkowiak suggested reviving the contest and asked the Expedition 72 crew if they would be willing to judge the entries. “They agreed, and also told us they would decorate some cookies for us to judge, too!”

      Astronauts aboard the International Space Station often decorate cookies as part of their holiday celebrations and have become adept at manipulating icing in zero gravity. NASA astronaut Nick Hague shared on social media, “It opened up a whole new dimension, quite literally, with layer upon layer of icing.”  
      The Expedition 72 crew decorates cookies aboard the International Space Station (left), and their finished products. NASA Teams in the MCC in Houston and NASA’s Marshall Space Flight Center Payload Operations Integration Center in Huntsville, Alabama, were joined by international partners ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency) from their respective control centers. The decorating began late on Christmas Eve and concluded on Christmas Day, ensuring space station crew members could participate in the fun on their days off.

      The 36 entries drew inspiration from traditional holiday imagery, human spaceflight, sports teams, and comic books. Each crew member selected their personal favorite cookie, in addition to choosing an overall winner. Payload Operations Director Jaclyn Poteraj created the winning cookie, depicting an astronaut riding on a reindeer made of cargo transfer bags, which are used to transport cargo to and store it aboard the International Space Station.

      The winning cookie design. Image courtesy of Jaclyn Poteraj “We had a lot of fun figuring out how to mix the colors we wanted for icing, deciding on designs, and ultimately decorating our cookies,” said Antkowiak. “Our team is lucky to have the responsibility of keeping the space station and her crew safe, and I’m glad we can find ways to still celebrate the holidays while at work.”

      Enjoy more photos from the cookie-decorating competition below.
      Fiona Antkowiak prepares icing for the cookies at her desk in the MCC The MCC Orbit 3 team’s decorated cookies. The MCC Orbit 1 team shows off their completed cookies. The MCC Orbit 2 team poses for a picture after decorating their cookies. Cookies decorated by the MCC Orbit 2 team. View the full article
    • By NASA
      5 Min Read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. This photo was taken from Dallas, Texas. Credits:
      NASA/Keegan Barber On April 8, 2024, a total solar eclipse swept across North America, from the western shores of Mexico, through the United States, and into northeastern Canada. For the eclipse, NASA helped fund numerous research projects and called upon citizen scientists in support of NASA’s goal to understand how our home planet is affected by the Sun – including, for example, how our star interacts with Earth’s atmosphere and affects radio communications.  
      At a press briefing on Tuesday, Dec. 10, scientists attending the annual meeting of the American Geophysical Union in Washington, D.C., reported some early results from a few of these eclipse experiments. 
      “Scientists and tens of thousands of volunteer observers were stationed throughout the Moon’s shadow,” said Kelly Korreck, eclipse program manager at NASA Headquarters in Washington. “Their efforts were a crucial part of the Heliophysics Big Year – helping us to learn more about the Sun and how it affects Earth’s atmosphere when our star’s light temporarily disappears from view.”
      Changes in the Corona
      On April 8, the Citizen CATE 2024 (Continental-America Telescopic Eclipse) project stationed 35 observing teams from local communities from Texas to Maine to capture images of the Sun’s outer atmosphere, or corona, during totality. Their goal is to see how the corona changed as totality swept across the continent.
      On Dec. 10, Sarah Kovac, the CATE project manager at the Southwest Research Institute in Boulder, Colorado, reported that, while a few teams were stymied by clouds, most observed totality successfully — collecting over 47,000 images in all. 
      These images were taken in polarized light, or light oriented in different directions, to help scientists better understand the processes that shape the corona.
      This preliminary movie from the Citizen CATE 2024 project stitches together polarized images of the solar corona taken from different sites during the total solar eclipse on April 8, 2024. SwRI/Citizen CATE 2024/Dan Seaton/Derek Lamb Kovac shared the first cut of a movie created from these images. The project is still stitching together all the images into the final, hour-long movie, for release at a later time. 
      “The beauty of CATE 2024 is that we blend cutting-edge professional science with community participants from all walks of life,” Kovac said. “The dedication of every participant made this project possible.” 
      Meanwhile, 50,000 feet above the ground, two NASA WB-57 aircraft chased the eclipse shadow as it raced across the continent, observing above the clouds and extending their time in totality to approximately 6 minutes and 20 seconds. 
      On board were cameras and spectrometers (instruments that analyze different wavelengths of light) built by multiple research teams to study the corona. 
      This image of the total solar eclipse is a combination of 30 50-millisecond exposures taken with a camera mounted on one of NASA’s WB-57 aircraft on April 8, 2024. It was captured in a wavelength of light emitted by ionized iron atoms called Fe XIV. This emission highlights electrified gas, called plasma, at a specific temperature (around 3.2 million degrees Fahrenheit) that often reveals arch-like structures in the corona. B. Justen, O. Mayer, M. Justen, S. Habbal, and M. Druckmuller On Dec. 10, Shadia Habbal of the University of Hawaii, who led one of the teams, reported that their instruments collected valuable data, despite one challenge. Cameras they had mounted on the aircraft’s wings experienced unexpected vibrations, which caused some of the images to be slightly blurred.
      However, all the cameras captured detailed images of the corona, and the spectrometers, which were located in the nose of the aircraft, were not affected. The results were so successful, scientists are already planning to fly similar experiments on the aircraft again.
      “The WB-57 is a remarkable platform for eclipse observations that we will try to capitalize on for future eclipses,” Habbal said. 
      Affecting the Atmosphere
      On April 8, amateur or “ham” radio operators sent and received signals to one another before, during, and after the eclipse as part of the Ham Radio Science Citizen Investigation (HamSCI) Festivals of Eclipse Ionospheric Science. More than 6,350 amateur radio operators generated over 52 million data points to observe how the sudden loss of sunlight during totality affects their radio signals and the ionosphere, an electrified region of Earth’s upper atmosphere. 
      Students from Case Western Reserve University operate radios during the 2024 total solar eclipse. HamSCI/Case Western Reserve University Radio communications inside and outside the path of totality improved at some frequencies (from 1-7 MHz), showing there was a reduction in ionospheric absorption. At higher frequencies (10 MHz and above), communications worsened. 
      Results using another technique, which bounced high-frequency radio waves (3-30 MHz) off the ionosphere, suggests that the ionosphere ascended in altitude during the eclipse and then descended to its normal height afterward. 
      “The project brings ham radio operators into the science community,” said Nathaniel Frissell, a professor at the University of Scranton in Pennsylvania and lead of HamSCI. “Their dedication to their craft made this research possible.”  
      Also looking at the atmosphere, the Nationwide Eclipse Ballooning Project organized student groups across the U.S. to launch balloons into the shadow of the Moon as it crossed the country in April 2024 and during a solar eclipse in October 2023. Teams flew weather sensors and other instruments to study the atmospheric response to the cold, dark shadow. 
      The eclipse’s shadow was captured from a camera aboard Virginia Tech’s balloon as part of the Nationwide Eclipse Ballooning Project on April 8, 2024. Nationwide Eclipse Ballooning Project/Virginia Tech This research, conducted by over 800 students, confirmed that eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. Just as waves form in a lake when water is disturbed, these waves also form in the atmosphere when air is disturbed. This project, led by Angela Des Jardins of Montana State University in Bozeman, also confirmed the presence of these waves during previous solar eclipses. Scientists think the trigger for these waves is a “hiccup” in the tropopause, a layer in Earth’s atmosphere, similar to an atmospheric effect that is observed during sunset. 
      “Half of the teams had little to no experience ballooning before the project,” said Jie Gong, a team science expert and atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But their hard work and research was vital in this finding.”
      By Abbey Interrante and Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Share








      Details
      Last Updated Dec 10, 2024 Related Terms
      2024 Solar Eclipse Citizen Science Goddard Space Flight Center Heliophysics Solar Eclipses The Sun Uncategorized Explore More
      8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets


      Article


      21 hours ago
      3 min read Annual Science Conference to Highlight NASA Research


      Article


      4 days ago
      2 min read Hubble Spots a Spiral in the Celestial River


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      FjordPhyto participants playing in an incredible phytoplankton bloom surrounded by early season sea ice at Damoy on the Antarctic Peninsula. They share knowledge with one another and take samples to better understand and protect Antarctica. Allison Cusick This year, we’re giving thanks to you for Doing NASA Science! You and the millions of other volunteers have enabled an incredible banquet of discoveries—by taking data, analyzing data, writing code, writing papers, and even inventing your own science projects. Your work helps us maintain our leadership in space science!
      Our scientists have shared examples of many outstanding volunteers. Here are just a few of the remarkable amateur scientists/citizen scientists whose help we’re so grateful for:
      Dani Abras from the FjordPhyto project.
      “Dani Abras has been an exemplary facilitator of the FjordPhyto program with travelers in Antarctica. Her enthusiasm for engaging people in the natural world is infectious and her love of participatory science draws people into the wonderful microscopic world of phytoplankton. She is a very enthusiastic and engaged Expedition Guide and you might even see her featured in our new online training course on the NASA Infiniscope platform.”  –Allison Cusick
      Mr. Kevvy from the “Are we Alone in the Universe?” project.
      “Mr. Kevvy goes above and beyond as a moderator of `Are we alone in the universe?’. He is always reaching out to me and letting me know what our volunteers have been experiencing, as well as going out of his way to look for other collaborations our project might be interested in. His insight is always extremely helpful, and many of his ideas have made it into our final products. I enjoy working with him and am grateful for his support.”  –Megan Li
      Nicholas Brereton, Emmanuel Gonzalez, and Stefan Green from the Genelab Microbes Analysis Working Group.
      “Over the course of ~6 years, the open-access data in NASA GeneLab/Open Science Data Repository was mined by this 100% volunteer group in  the Microbes Analysis Working Group, which resulted in this recent publication: Spaceflight alters host-gut microbiota interactions  All authors in the publication could/should get kudos, but especially the ones listed above who saw it through” –Ryan Scott
      Want to join this illustrious group and make a lasting mark on  NASA science? You’ll find opportunities here at https://science.nasa.gov/citizen-science/.   Happy Thanksgiving!
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Nov 26, 2024 Related Terms
      Astrophysics Biological & Physical Sciences Citizen Science Earth Science Heliophysics Planetary Science Explore More
      4 min read NASA, JAXA XRISM Mission Looks Deeply Into ‘Hidden’ Stellar System


      Article


      1 day ago
      5 min read Hats Off to NASA’s Webb: Sombrero Galaxy Dazzles in New Image


      Article


      1 day ago
      2 min read Hubble Captures an Edge-On Spiral with Curve Appeal


      Article


      4 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...