Members Can Post Anonymously On This Site
4K: The Milky Way : A view from the International Space Station
-
Similar Topics
-
By NASA
On Jan. 19, 1965, Gemini 2 successfully completed the second of two uncrewed test flights of the spacecraft and its Titan II booster, clearing the way for the first crewed mission. The 18-minute suborbital mission achieved the primary goals of flight qualifying the Gemini spacecraft, especially its heat shield during a stressful reentry. Recovery forces retrieved the capsule following its splashdown, allowing engineers to evaluate how its systems fared during the flight. The success of Gemini 2 enabled the first crewed mission to fly two months later, beginning a series of 10 flights over the following 20 months. The astronauts who flew these missions demonstrated the rendezvous and docking techniques necessary to implement the Lunar Orbit Rendezvous method NASA chose for the Moon landing mission. They also proved that astronauts could work outside their spacecraft during spacewalks and that spacecraft and astronauts could function for at least eight days, the minimum time for a roundtrip lunar mission. The Gemini program proved critical to fulfill President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s.
Cutaway diagram of the Gemini spacecraft. Workers at Launch Pad 19 lift Gemini 2 to mate it with its Titan II rocket. At Pad 19, engineers verify the flight simulators inside Gemini 2. Following the success of Gemini 1 in April 1964, NASA had hoped to fly the second mission before the end of the year and the first crewed mission by January 1965. The two stages of the Titan II rocket arrived at Cape Kennedy from the Martin Marietta factory in Baltimore on July 11, and workers erected it on Launch Pad 19 five days later. A lightning strike at the pad on Aug. 17 invalidated all previous testing and required replacement of some pad equipment. A series of three hurricanes in August and September forced workers to partially or totally unstack the vehicle before stacking it for the final time on Sept. 14. The Gemini 2 spacecraft arrived at Cape Kennedy from its builder, the McDonnell Company in St. Louis, on Sept. 21, and workers hoisted it to the top of the Titan II on Oct. 18. Technical issues delayed the spacecraft’s physical mating to the rocket until Nov. 5. These accumulated delays pushed the launch date back to Dec. 9.
The launch abort on Dec. 9, 1964. Liftoff of Gemini 2 from Launch Pad 19 on Jan. 19, 1965. Engineers in the blockhouse monitor the progress of the Titan II during the ascent. Fueling of the rocket began late on Dec. 8, and following three brief holds in the countdown, the Titan’s two first stage engines ignited at 11:41 a.m. EST on Dec. 9. and promptly shut down one second later. Engineers later determined that a cracked valve resulted in loss of hydraulic pressure, causing the malfunction detection system to switch to its backup mode, forcing a shutdown of the engines. Repairs meant a delay into the new year. On Jan. 19, 1965, following a mostly smooth countdown, Gemini 2 lifted off from Pad 19 at 9:04 a.m. EST.
The Mission Control Center (MCC) at NASA’s Kennedy Space Center in Florida. In the MCC, astronauts Eugene Cernan, left, Walter Schirra, Gordon Cooper, Donald “Deke” Slayton, and Virgil “Gus” Grissom monitor the Gemini 2 flight. In the Gemini Mission Control Center at NASA’s Kennedy Space Center in Florida, Flight Director Christopher C. Kraft led a team of flight controllers that monitored all aspects of the flight. At the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a team of controllers led by Flight Director John Hodge passively monitored the flight from the newly built Mission Control Center. They would act as observers for this flight and Gemini 3, the first crewed mission, before taking over full control with Gemini IV, and control all subsequent American human spaceflights. The Titan rocket’s two stages placed Gemini 2 into a suborbital trajectory, reaching a maximum altitude of 98.9 miles, with the vehicle attaining a maximum velocity of 16,709 miles per hour. Within a minute after separating from the Titan’s second stage, Gemini 2 executed a maneuver to orient its heat shield in the direction of flight to prepare for reentry. Flight simulators installed where the astronauts normally would sit controlled the maneuvers. About seven minutes after liftoff, Gemini 2 jettisoned its equipment section, followed by firing of the retrorockets, and then separation of the retrorocket section, exposing the spacecraft’s heat shield.
View from a camera mounted on a cockpit window during Gemini 2’s reentry. View from the cockpit window during Gemini 2’s descent on its parachute. Gemini 2 then began its reentry, the heat shield protecting the spacecraft from the 2,000-degree heat generated by friction with the Earth’s upper atmosphere. A pilot parachute pulled away the rendezvous and recovery section. At 10,000 feet, the main parachute deployed, and Gemini 2 descended to a splashdown 2,127 miles from its launch pad, after a flight of 18 minutes 16 seconds. The splashdown took place in the Atlantic Ocean about 800 miles east of San Juan, Puerto Rico, and 25 miles from the prime recovery ship, the U.S.S. Lake Champlain (CVS-39).
A U.S. Navy helicopter hovers over the Gemini 2 capsule following its splashdown as a diver jumps into the water. Sailors hoist Gemini 2 aboard the U.S.S. Lake Champlain. U.S. Navy helicopters delivered divers to the splashdown area, who installed a flotation collar around the spacecraft. The Lake Champlain pulled alongside, and sailors hoisted the capsule onto the carrier, securing it on deck one hour forty minutes after liftoff. The spacecraft appeared to be in good condition and arrived back at Cape Kennedy on Jan. 22 for a thorough inspection. As an added bonus, sailors recovered the rendezvous and recovery section. Astronaut Virgil “Gus” Grissom, whom along with John Young NASA had selected to fly the first crewed Gemini mission, said after the splashdown, “We now see the road clear to our flight, and we’re looking forward to it.” Flight Director Kraft called it “very successful.” Gemini Program Manager Charles Matthews predicted the first crewed mission could occur within three months. Gemini 3 actually launched on March 23.
Enjoy this NASA video of the Gemini 2 mission.
Postscript
The Gemini-B capsule and a Manned Orbiting Laboratory (MOL) mockup atop a Titan-IIIC rocket in 1966. The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Former MOL and NASA astronaut Robert Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top. Gemini 2 not only cleared the way for the first crewed Gemini mission and the rest of the program, it also took on a second life as a test vehicle for the U.S. Air Force’s Manned Orbiting Laboratory (MOL). The Air Force modified the spacecraft, including cutting a hatch through its heat shield, renamed it Gemini-B, and launched it on Nov. 3, 1966, atop a Titan IIIC rocket. The test flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Recovery forces retrieved the Gemini-B capsule in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. This marked the only repeat flight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. Visitors can view Gemini 2/Gemini-B on display at the Cape Canaveral Space Force Museum.
View the full article
-
By NASA
NASA astronaut Victor Glover tests collection methods for ISS External Microorganisms in the Neutral Buoyancy Lab at Johnson Space Center.NASA Astronauts are scheduled to venture outside the International Space Station to collect microbiological samples during crew spacewalks for the ISS External Microorganisms experiment. This investigation focuses on sampling at sites near life support system vents to examine whether the spacecraft releases microorganisms, how many, and how far they may travel.
This experiment could help researchers understand whether and how these microorganisms survive and reproduce in the harsh space environment and how they may perform at planetary destinations such as the Moon and Mars. Extremophiles, or microorganisms that can survive harsh environments, are also of interest to industries on Earth such as pharmaceuticals and agriculture.
Spacecrafts and spacesuits are thoroughly sterilized before missions; however, humans carry their own microbiomes and continuously regenerate microbial communities. It’s important to understand and address how well current designs and processes prevent or limit the spread of human contamination. The data could help determine whether changes are needed to crewed spacecraft, including spacesuits, that are used to explore destinations where life may exist now or in the past.
Learn more about how researchers monitor microbes on the space station.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
International Space Station News
Space Station Research Reference Materials
Station Benefits for Humanity
View the full article
-
By NASA
Insights into metal alloy solidification
Researchers report details of phase and structure in the solidification of metal alloys on the International Space Station, including formation of microstructures. Because these microstructures determine a material’s mechanical properties, this work could support improvements in techniques for producing coatings and additive manufacturing or 3D printing processes.
METCOMP, an ESA (European Space Agency) investigation, studied solidification in microgravity using transparent organic mixtures as stand-ins for metal alloys. Conducting the research in microgravity removed the influence of convection and other effects of gravity. Results help scientists better understand and validate models of solidification mechanisms, enabling better forecasting of microstructures and improving manufacturing processes.
Image from the METCOMP investigation of how a metal alloy could look like as it solidifies. E-USOC Measuring the height of upper-atmospheric electrical discharges
Researchers determined the height of a blue discharge from a thundercloud using ground-based electric field measurements and space-based optical measurements from Atmosphere-Space Interactions Monitor (ASIM). This finding helps scientists better understand how these high-altitude lightning-related events affect atmospheric chemistry and could help improve atmospheric models and climate and weather predictions.
ESA’s ASIM is an Earth observation facility that studies severe thunderstorms and upper-atmospheric lighting events and their role in the Earth’s atmosphere and climate. Upper-atmospheric lightning, also known as transient luminous events, occurs well above the altitudes of normal lightning and storm clouds. The data collected by ASIM could support research on the statistical properties of many upper atmosphere lightning events, such as comparison of peak intensities of blue and red pulses with reports from lightning detection networks.
An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Modeling a complex neutron star
Scientists report that they can use modeling of neutron star PSRJ1231−1411’s X-ray pulses to infer its mass and radius and narrow the possible behaviors of the dense matter at its core. This finding provides a better understanding of the composition and structure of these celestial objects, improving models that help answer questions about conditions in the universe.
The Neutron star Interior Composition Explorer provides high-precision measurements of pulses of X-ray radiation from neutron stars. This particular neutron star presented challenges in finding a fit between models and data, possibly due to fundamental issues with its pulse profile. The authors recommend a program of simulations using synthetic data to determine whether there are fundamental issues with this type of pulse profile that could prevent efforts to obtain tighter and more robust constraints.
Concentrators on the Neutron star Interior Composition Explorer instrument.NASAView the full article
-
By NASA
6 Min Read NASA International Space Apps Challenge Announces 2024 Global Winners
The 2024 NASA Space Apps Challenge was hosted at 485 events in 163 countries and territories. Credits: NASA NASA Space Apps has named 10 global winners, recognizing teams from around the world for their exceptional innovation and collaboration during the 2024 NASA Space Apps Challenge. As the largest annual global hackathon, this event invites participants to leverage open data from NASA and its space agency partners to tackle real-world challenges on Earth and in space.
Last year’s hackathon welcomed 93,520 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants gathered at local events in 163 countries and territories, forming teams to address the challenges authored by NASA subject matter experts. These challenges included subjects/themes/questions in ocean ecosystems, exoplanet exploration, Earth observation, planetary seismology, and more.
The 2024 Global Winners were determined out of 9,996 project submissions and judged by subject matter experts from NASA and space agency partners.
“These 10 exceptional teams created projects that reflect our commitment to understanding our planet and exploring beyond, with the potential to transform Earth and space science for the benefit of all,” said Dr. Keith Gaddis, NASA Space Apps Challenge program scientistat NASA Headquarters in Washington. “The NASA Space Apps Challenge showcases the potential of every idea and individual. I am excited to see how these innovators will shape and inspire the future of science and exploration.”
You can watch the Global Winners Announcement here to meet these winning teams and learn about the inspiration behind their projects.
2024 NASA Space Apps Challenge Global Winners
Best Use of Science Award: WMPGang
Team Members: Dakota C., Ian C., Maximilian V., Simon S.
Challenge: Create an Orrery Web App that Displays Near-Earth Objects
Country/Territory: Waterloo,Canada
Using their skills in programming, data analysis, and visualization, WMPGang created a web app that identifies satellite risk zones using real-time data on Near-Earth Objects and meteor streams.
Learn more about WMPGang’s SkyShield: Protecting Earth and Satellites from Space Hazards project Best Use of Data Award: GaamaRamma
Team Members: Aakash H., Arun G., Arthur A., Gabriel A., May K.
Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
Country/Territory: Universal Event, United States
GaamaRamma’s team of tech enthusiasts aimed to create a sustainable way to help farmers efficiently manage water availability in the face of drought, pests, and disease.
Learn more about GaamaRamma’s Waterwise project Best Use of Technology Award: 42 QuakeHeroes
Team Members: Alailton A., Ana B., Gabriel C., Gustavo M., Gustavo T., Larissa M.
Challenge: Seismic Detection Across the Solar System
Country/Territory: Maceió, Brazil
Team 42 QuakeHeroes employed a deep neural network model to identify the precise locations of seismic events within time-series data. They used advanced signal processing techniques to isolate and analyze unique components of non-stationary signals.
Learn more about 42 QuakeHeroes’ project Galactic Impact Award: NVS-knot
Team Members: Oksana M., Oleksandra M., Prokipchyn Y., Val K.
Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
Country/Territory: Kyiv, Ukraine
The NVS-knot team assessed planting conditions using surface soil moisture and evapotranspiration data, then created an app that empowers farmers to manage planting risks.
Learn more about NVS-knot’s 2plant | ! 2plant project Best Mission Concept Award: AsturExplorers
Team Members: Coral M., Daniel C., Daniel V., Juan B., Samuel G., Vladimir C.
Challenge: Landsat Reflectance Data: On the Fly and at Your Fingertips
Country/Territory: Gijón, Spain
AsturExplorers created Landsat Connect, a web app that provides a simple, intuitive way to track Landast satellites and access Landsat surface reflectance data. The app also allows users to set a target location and receive notifications when Landsat satellites pass over their area.
Learn more about AsturExplorers’ Landsat Connect project Most Inspirational Award: Innovisionaries
Team Members: Rikzah K., Samira K., Shafeeqa J., Umamah A.
Challenge: SDGs in the Classroom
Country/Territory: Sharjah, United Arab Emirates
Innovisionaries developed Eco-Metropolis to inspire sustainability through gameplay. This city-building game engages players in making critical urban planning and resource management decisions based on real-world environmental data.
Learn more about Innovisionaries’ Eco-Metropolis: Sustainable City Simulation project Best Storytelling Award: TerraTales
Team Members: Ahmed R., Fatma E., Habiba A., Judy A., Maya M.
Challenge: Tell Us a Climate Story!
Country/Territory: Cairo, Egypt
TerraTales shared stories of how Earth’s changing climate affects three unique regions: Egypt, Brazil, and Germany. The web app also features an artificial intelligence (AI) model for climate forecasting and an interactive game to encourage users to make eco-friendly choices.
Learn more about TerraTale’s project Global Connection Award: Asteroid Destroyer
Team Members: Kapeesh K., Khoi N., Sathyajit L., Satyam S.
Challenge: Navigator for the Habitable Worlds Observatory (HWO): Mapping the Characterizable Exoplanets in our Galaxy
Country/Territory: Saskatoon, Canada
Team Asteroid Destroyer honed in on exoplanets, utilizing data processing and machine learning techniques to map exoplanets based on size, temperature, and distance.
Learn more about Asteroid Destroyer’s project Art & Technology Award: Connected Earth Museum
Team Members: Gabriel M., Luc R., Lucas R., Mattheus L., Pedro C., Riccardo S.
Challenge: Imagine our Connected Earth
Country/Territory: Campinas, Brazil
Team Connected Earth Museum created an immersive virtual museum experience to raise awareness of Earth’s changing climate. An AI host guides users through an interactive gallery featuring 3D and 2D visualizations, including a time series on Earth and ocean temperatures, population density, wildfires, and more.
Learn more about Connected Earth Museums’ project Local Impact Award: Team I.O.
Team Members: Frank R., Jan K., Raphael R., Ryan Z., Victoria M.
Challenge: Community Mapping
Country/Territory: Florianópolis, Brazil
Team I.O. bridges the gap between complex Geographic Information Systems data and user-friendly communication, making critical environmental information accessible to everyone, regardless of technical expertise.
Learn more about Team I.O.’s G.R.O.W. (Global Recovery and Observation of Wildfires) project Want to take part in the 2025 NASA Space Apps Challenge? Mark your calendars for October 4 and 5! Registration will open in July. At that time, participants will be able to register for a local event hosted by NASA Space Apps leads from around the world. You can stay connected with NASA Space Apps on Facebook, Instagram, and X.
Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
Share
Details
Last Updated Jan 16, 2025 Related Terms
STEM Engagement at NASA Earth View the full article
-
By European Space Agency
Video: 00:02:05 This is a new artist’s animation of our galaxy, the Milky Way, based on data from ESA’s Gaia space telescope.
Gaia has changed our impression of the Milky Way. Even seemingly simple ideas about the nature of our galaxy’s central bar and the spiral arms have been overturned. Gaia has shown us that it has more than two spiral arms and that they are less prominent than we previously thought. In addition, Gaia has shown that its central bar is more inclined with respect to the Sun.
No spacecraft can travel beyond our galaxy, so we can’t take a selfie, but Gaia is giving us the best insight yet of what our home galaxy looks like. Once all of Gaia’s observations collected over the past decade are made available in two upcoming data releases, we can expect an even sharper view of the Milky Way.
Click here to download the still image of the Milky Way.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.