Members Can Post Anonymously On This Site
Possible UFO flying above the Martian surface caught by Perseverance Rover
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Curiosity rover appears as a dark speck in this contrast-enhanced view captured on Feb. 28, 2025, by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Trailing Curiosity are the rover’s tracks, which can linger on the Martian surface for months before being erased by the wind. NASA/JPL-Caltech/University of Arizona The image marks what may be the first time one of the agency’s Mars orbiters has captured the rover driving.
NASA’s Curiosity Mars rover has never been camera shy, having been seen in selfies and images taken from space. But on Feb. 28 — the 4,466th Martian day, or sol, of the mission — Curiosity was captured in what is believed to be the first orbital image of the rover mid-drive across the Red Planet.
Taken by the HiRISE (High-Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter, the image shows Curiosity as a dark speck at the front of a long trail of rover tracks. Likely to last for months before being erased by wind, the tracks span about 1,050 feet (320 meters). They represent roughly 11 drives starting on Feb. 2 as Curiosity trucked along at a top speed of 0.1 mph (0.16 kph) from Gediz Vallis channel on the journey to its next science stop: a region with potential boxwork formations, possibly made by groundwater billions of years ago.
How quickly the rover reaches the area depends on a number of factors, including how its software navigates the surface and how challenging the terrain is to climb. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which leads Curiosity’s mission, work with scientists to plan each day’s trek.
“By comparing the time HiRISE took the image to the rover’s commands for the day, we can see it was nearly done with a 69-foot drive,” said Doug Ellison, Curiosity’s planning team chief at JPL.
Designed to ensure the best spatial resolution, HiRISE takes an image with the majority of the scene in black and white and a strip of color down the middle. While the camera has captured Curiosity in color before, this time the rover happened to fall within the black-and-white part of the image.
In the new image, Curiosity’s tracks lead to the base of a steep slope. The rover has since ascended that slope since then, and it is expected to reach its new science location within a month or so.
More About Curiosity and MRO
NASA’s Curiosity Mars rover was built at JPL, which is managed for the agency by Caltech in Pasadena, California. JPL manages both the Curiosity and Mars Reconnaissance Orbiter missions on behalf of NASA’s Science Mission Directorate in Washington as part of the agency’s Mars Exploration Program portfolio. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado.
For more about the missions, visit:
science.nasa.gov/mission/msl-curiosity
science.nasa.gov/mission/mars-reconnaissance-orbiter
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-059
Share
Details
Last Updated Apr 24, 2025 Related Terms
Mars Science Laboratory (MSL) Curiosity (Rover) Mars Mars Reconnaissance Orbiter (MRO) Explore More
5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing…
Article 1 day ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
Article 7 days ago 6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Boles.pdf
Jessica Boles
University of California, Berkeley
This project will develop piezoelectric-based power conversion for small power systems on the lunar surface. These piezoelectric systems can potentially offer high power density to significantly reduce size, weight, and cost. They can also offer high efficiency as well as resistance to the extreme lunar environment with its expected prolonged exposure to extreme cold and radiation. The effort will build and test prototype piezoelectric DC-to-DC power converters and DC-to-DC power supplies.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Curiosity Mars rover sees its tracks receding into the distance at a site nicknamed “Ubajara” on April 30, 2023. This site is where Curiosity made the discovery of siderite, a mineral that may help explain the fate of the planet’s thicker ancient atmosphere.Credit: NASA/JPL-Caltech/MSSS New findings from NASA’s Curiosity Mars rover could provide an answer to the mystery of what happened to the planet’s ancient atmosphere and how Mars has evolved over time.
Researchers have long believed that Mars once had a thick, carbon dioxide-rich atmosphere and liquid water on the planet’s surface. That carbon dioxide and water should have reacted with Martian rocks to create carbonate minerals. Until now, though, rover missions and near-infrared spectroscopy analysis from Mars-orbiting satellites haven’t found the amounts of carbonate on the planet’s surface predicted by this theory.
Reported in an April paper in Science, data from three of Curiosity’s drill sites revealed the presence of siderite, an iron carbonate mineral, within the sulfate-rich rocky layers of Mount Sharp in Mars’ Gale Crater.
“The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars,” said Benjamin Tutolo, associate professor at the University of Calgary, Canada, and lead author of the paper.
To study the Red Planet’s chemical and mineral makeup, Curiosity drills three to four centimeters down into the subsurface, then drops the powdered rock samples into its CheMin instrument. The instrument, led by NASA’s Ames Research Center in California’s Silicon Valley, uses X-ray diffraction to analyze rocks and soil. CheMin’s data was processed and analyzed by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston.
“Drilling through the layered Martian surface is like going through a history book,” said Thomas Bristow, research scientist at NASA Ames and coauthor of the paper. “Just a few centimeters down gives us a good idea of the minerals that formed at or close to the surface around 3.5 billion years ago.”
The discovery of this carbonate mineral in rocks beneath the surface suggests that carbonate may be masked by other minerals in near-infrared satellite analysis. If other sulfate-rich layers across Mars also contain carbonates, the amount of stored carbon dioxide would be a fraction of that needed in the ancient atmosphere to create conditions warm enough to support liquid water. The rest could be hidden in other deposits or have been lost to space over time.
In the future, missions or analyses of other sulfate-rich areas on Mars could confirm these findings and help us better understand the planet’s early history and how it transformed as its atmosphere was lost.
Curiosity, part of NASA’s Mars Exploration Program (MEP) portfolio, was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
For more information on Curiosity, visit:
https://science.nasa.gov/mission/msl-curiosity
News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Share
Details
Last Updated Apr 17, 2025 Related Terms
Ames Research Center Astromaterials Curiosity (Rover) General Jet Propulsion Laboratory Mars Science Laboratory (MSL) Explore More
7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
Article 21 hours ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
Article 24 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
Article 1 day ago Keep Exploring Discover Related Topics
Curiosity Rover (MSL)
Ames Research Center
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
Curiosity Science Instruments
Curiosity’s scientific instruments are the tools that bring us stunning images of Mars and ground-breaking discoveries.
View the full article
-
By European Space Agency
Satellite observations show that sea-surface temperatures over the past four decades have been getting warmer at an accelerated pace.
View the full article
-
By NASA
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA has announced the winners of it’s 31st Human Exploration Rover Challenge . The annual engineering competition – one of the agency’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. NASA NASA has announced the winning student teams in the 2025 Human Exploration Rover Challenge. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. In the human-powered division, Parish Episcopal School in Dallas, Texas, earned first place in the high school division, and the Campbell University in Buies Creek, North Carolina, captured the college and university title. In the remote-control division, Bright Foundation in Surrey, British Columbia, Canada, earned first place in the middle and high school division, and the Instituto Tecnologico de Santa Domingo in the Dominican Republic, captured the college and university title.
The annual engineering competition – one of NASA’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. The complete list of 2025 award winners is provided below:
Human-Powered High School Division
First Place: Parish Episcopal School, Dallas, Texas Second Place: Ecambia High School, Pensacola, Florida Third Place: Centro Boliviano Americano – Santa Cruz, Bolivia Human-Powered College/University Division
First Place: Campbell University, Buies Creek, North Carolina Second Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Third Place: University of Alabama in Huntsville Remote-Control Middle School/High School Division
First Place: Bright Foundation, Surrey, British Columbia, Canada Second Place: Assumption College, Brangrak, Bangkok, Thailand Third Place: Erie High School, Erie, Colorado Remote-Control College/University Division
First Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Second Place: Campbell University, Buies Creek, North Carolina Third Place: Tecnologico de Monterey – Campus Cuernvaca, Xochitepec, Morelos, Mexico Ingenuity Award
Queen’s University, Kingston, Ontario, Canada Phoenix Award
Human-Powered High School Division: International Hope School of Bangladesh, Uttara, Dhaka, Bangladesh College/University Division: Auburn University, Auburn, Alabama Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Southwest Oklahoma State University, Weatherford, Oklahoma Task Challenge Award
Remote-Control Middle School/High School Division: Assumption College, Bangrak, Bangkok, Thailand College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Project Review Award
Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: Campbell University, Buies Creek, North Carolina Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Featherweight Award
Campbell University, Buies Creek, North Carolina Safety Award
Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: University of Alabama in Huntsville Crash and Burn Award
Universidad de Monterrey, Nuevo Leon, Mexico (Human-Powered Division) Team Spirit Award
Instituto Tecnologico de Santo Domingo, Dominican Republic (Human-Powered Division) STEM Engagement Award
Human-Powered High School Division: Albertville Innovation School, Albertville, Alabama College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Remote-Control Middle School/High School Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic College/University Division: Tecnologico de Monterrey, Nuevo Leon, Mexico Social Media Award
Human-Powered High School Division: International Hope School of Bagladesh, Uttara, Dhaka, Bangladesh College/University Division: Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Remote-Control Middle School/High School Division: ATLAS SkillTech University, Mumbai, Maharashtra, India College/University Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic Most Improved Performance Award
Human-Powered High School Division: Space Education Institute, Leipzig, Germany College/University Division: Purdue University Northwest, Hammond, Indiana Remote-Control Middle School/High School Division: Erie High School, Erie, Colorado College/University Division: Campbell University, Buies Creek, North Carolina Pit Crew Award
Human-Powered High School Division: Academy of Arts, Career, and Technology, Reno, Nevada College/University Division: Queen’s University, Kingston, Ontario, Canada Artemis Educator Award
Fabion Diaz Palacious from Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Rookie of the Year
Deira International School, Dubai, United Arab Emirates
More than 500 students with 75 teams from around the world participated in the 31st year of the competition. Participating teams represented 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations. Teams were awarded points based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing multiple safety and design reviews with NASA engineers.
NASA expanded the 2025 challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate.
“This student design challenge encourages the next generation of scientists and engineers to engage in the design process by providing innovative concepts and unique perspectives,” said Vemitra Alexander, who leads the challenge for NASA’s Office of STEM Engagement at Marshall. “This challenge also continues NASA’s legacy of providing valuable experiences to students who may be responsible for planning future space missions, including crewed missions to other worlds.”
The rover challenge is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which will land Americans on the Moon while establishing a long-term presence for science and exploration, preparing for future human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics.
The competition is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. Since its inception in 1994, more than 15,000 students have participated – with many former students now working at NASA, or within the aerospace industry.
To learn more about the Human Exploration Rover Challenge, please visit:
https://www.nasa.gov/roverchallenge/home/index.html
News Media Contact
Taylor Goodwin
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
taylor.goodwin@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.