Members Can Post Anonymously On This Site
CryoSat reveals ice loss from glaciers in Alaska and Asia
-
Similar Topics
-
By European Space Agency
As Arctic temperatures rise, marine-terminating glaciers—especially in places like Svalbard—are undergoing rapid retreat and intensified calving.
The ESA-funded Space for Shore project utilises radar data from the Copernicus Sentinel-1 mission to provide precise, year-over-year insights into glacier retreat and calving intensity, particularly in areas like Kongsfjorden, where notable glaciers are experiencing significant retreat.
View the full article
-
By NASA
2 min read
NASA Reveals Prototype Telescope for Gravitational Wave Observatory
NASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources.
On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA/Dennis Henry The LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership with NASA to detect gravitational waves by using lasers to measure precise distances — down to picometers, or trillionths of a meter — between a trio of spacecraft distributed in a vast configuration larger than the Sun. Each side of the triangular array will measure nearly 1.6 million miles, or 2.5 million kilometers.
“Twin telescopes aboard each spacecraft will both transmit and receive infrared laser beams to track their companions, and NASA is supplying all six of them to the LISA mission,” said Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The prototype, called the Engineering Development Unit Telescope, will guide us as we work toward building the flight hardware.”
The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. NASA/Dennis Henry The Engineering Development Unit Telescope, which was manufactured and assembled by L3Harris Technologies in Rochester, New York, arrived at Goddard in May. The primary mirror is coated in gold to better reflect the infrared lasers and to reduce heat loss from a surface exposed to cold space since the telescope will operate best when close to room temperature.
The prototype is made entirely from an amber-colored glass-ceramic called Zerodur, manufactured by Schott in Mainz, Germany. The material is widely used for telescope mirrors and other applications requiring high precision because its shape changes very little over a wide range of temperatures.
The LISA mission is slated to launch in the mid-2030s.
Download additional images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Oct 22, 2024 Related Terms
Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Gravitational Waves LISA (Laser Interferometer Space Antenna) The Universe Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
7 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Jhony Zavaleta, ASIA-AQ Project Manager, welcomes DC-8 Navigator Walter Klein and the rest of the aircraft crew to U-Tapao, Thailand for its initial arrival to the country during the ASIA-AQ campaign. Erin Czech (back, blue shirt) and Jaden Ta (front, black pants) served as part of the Thailand ESPO site management team, while Zavaleta and Sam Kim (far right) worked as the ESPO advance team to prepare each new site for the mission’s arrival. NASA Ames/Rafael Luis Méndez Peña ESPO solves problems before you know you have them. If you are missing a canister of liquid nitrogen, got locked out of your rental car, or need clearance for a South Korean military base, you want ESPO in your corner.
What is ESPO?
While the Earth Science Project Office (ESPO) does many things, one of the team’s primary responsibilities is providing project management for many of the largest and most complex airborne campaigns across NASA’s Earth Science Division.
Some of these missions are domestic, such as the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE). S-MODE deployed three separate field campaigns from 2021-2023, using planes, drones, marine robotics, and research vessels to study ocean eddies and sub-surface dynamics. NASA Ames Research Center, located in Northern California, served as S-MODE’s control center and the base for two of the three deployed aircraft.
Erin Czech (far left) stands with Jacob Soboroff and the Today Show crew, members of the NASA Ames Public Affairs Office, researchers from the Jet Propulsion Laboratory (JPL), and the NASA Langley G-III air crew during S-MODE’s 2023 deployment. Courtesy of Jacob Soboroff
ESPO also provides project management for many international missions, such as the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ), which deployed in January, 2024 out of South Korea, Thailand, and the Philippines. The campaign used satellites, aircraft, and ground-based sensors to study air quality across Asia, as part of a global effort to better understand the factors that contribute to air quality.
Despite the critical nature of ESPO’s work, they’ll be the first to tell you that their goal is to remain behind the scenes. “Our mission statement is essentially to let the scientists concentrate on science,” said Erin Czech, Assistant Branch Chief of ESPO. “Our team’s job is to stay in the background. We don’t really advertise all the things we do, the pieces we put together, the crises we solve, because we don’t want folks to have to be in the weeds with us. We’ll take care of it.”
Making the invisible, visible: What does this look like in practice?
Before a deployment:
Project management for major airborne campaigns begins long before a deployment. The team begins by helping establish a mission framework, such as getting a budget in place, settling grants and funding with partner universities and agencies, and performing site visits.
“We are not scientists,” Czech said, “it’s the job of the Principal Investigator to mission plan. Our job is to evaluate risk, set up contingency plans, and help make sure all the different groups are talking to each other. We work with world-class scientists, who are going to come up with an awesome plan; we just want to do whatever we need to in order to support them.”
We work with world-class scientists, who are going to come up with an awesome plan; we just want to do whatever we need to in order to support them.
Erin Czech
ESPO Assistant Branch Chief
As the deployment date draws closer, the team nails down logistics: deciding how and where to ship equipment, reserving hotel blocks for researchers, acquiring diplomatic clearances, running planning meetings between agencies, and so much more.
This process is particularly complicated for multi-site, international missions like ASIA-AQ, which required multiple visits to each country before the actual deployment. “We looked at many locations in each country on the first scouting trip, to help figure out deployment sites,” said Jhony Zavaleta, Deputy Director for ESPO and Project Manager for ASIA-AQ. “The second scouting trip was to evaluate modifications promised during the first trip, such as upgrades to infrastructure, and to figure out hotels, transit options, specific facilities for mission operations, that sort of thing.”
According to Zavaleta, another purpose of these advance trips was to put pieces in place with partner organizations – such as civilian aviation authorities, foreign science ministries, or military operations – so that when NASA officially requested diplomatic clearance to run the airborne campaigns, the groundwork had already been laid.
Then it’s go time.
During the deployment:
As the deployment gets underway, ESPO keeps the flurry of activity running as smoothly as possible.
“During a deployment, you’re working all day every day,” said Czech, who is also the Project Manager for S-MODE. “But really that’s the whole mission team. When you’re on a NASA project, the whole team is incredibly dedicated and working like crazy, because everybody’s on the same page to make the most out of this investment, and take advantage of any kind of science opportunity that presents itself day to day.”
For Zavaleta, day-to-day operations meant escorting personnel onto military bases, tracking down liquid nitrogen, coordinating media days with local news outlets, setting up satellite communications, arranging transportation between sites, and preparing the next location. “I was on the ESPO advance team, which would set up one location, overlap with the ESPO site management team for about a week, then head to the next,” Zavaleta recalled. “Our teams would leapfrog; we were always managing site logistics, but also always preparing and setting up for the next spot.”
(From left) Stevie Phothisane, Vidal Salazar, and Daisy Gonzalez, the ESPO site management team for the Philippines during ASIA-AQ, sit at Clark International Airport coordinating daily operations support while the aircraft was in flight.NASA Ames/Rafael Luis Méndez Peña
Beyond the day-to-day operations, ESPO also steps in when major issues arise. According to Czech, they can usually expect one or two big wrenches to come up for any major mission.
For S-MODE, the first wrench came in the form of a global pandemic. “The original deployment was set for April, 2020,” Czech said. “Everything was shutting down, and we had just set everything up: ship, aircraft, everything. In fact, we set everything up two more times before we ultimately got to do our first deployment, in October of 2021.”
The second major wrench happened when four months before the actual launch, the research vessel the mission was planned around backed out. From there, Czech said it was a mad scramble to find a suitable replacement vessel that was already on the West Coast, and to build out the on-board infrastructure to meet the mission requirements.
The R/V (Research Vessel) Oceanus sits docked in Newport, Oregon during S-MODE ship mobilization. The Oceanus was one of three research vessels that deployed throughout the mission. NASA Ames/Sommer Nicholas
“The key is just to always be on the lookout for issues, keep agile, and don’t get too frustrated if things don’t go your way,” Czech said. “It is what it is. Some major issue comes up on every big mission: you’ve just got to figure out how to deal with it, then move on.”
After the deployment:
After a field deployment is finished, there are still years of work to do – for the scientists and for ESPO.
The final S-MODE field deployment concluded in Spring of 2023. While the science team has been processing data and analyzing results, ESPO’s role has been to organize annual science team meetings, track publications tied to the mission, and help compile a final report to be presented in Washington DC when the mission officially wraps in May of 2025.
Researchers Kayli Matsuyoshi, Luke Colosi and Luc Lenain in the Air-Sea Interaction Laboratory at SIO discussing the latest S-MODE findings. Courtesy of Nick Pizzo For ASIA-AQ, whose deployment wrapped up in March of 2024, ESPO’s first task was getting all equipment and personnel back to their respective home bases. Next up, Zavaleta and his team are coordinating a science team meeting in Malaysia in January of 2025, and supporting the scientists as they put together a preliminary research report for later that spring.
Knowledge and Expertise
While logistical skills and communication brokering are important pieces of ESPO’s role, knowledge may be the group’s most important asset. “In many ways, our value to NASA lies in the fact that we’ve been doing this a long time,” Czech said. “Our first mission was in 1987, and we’ve run over 60 campaigns since then; we have a lot of institutional knowledge that gets passed down, and a lot of experience between our team members. That expertise is a large part of our value to the agency.”
To access the data from S-MODE, visit the Physical Oceanography Distributed Active Archive Center (PO.DAAC)
About the Author
Milan Loiacono
Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
Share
Details
Last Updated Oct 18, 2024 Related Terms
General Earth Science Earth Science Division Explore More
5 min read What is Air Quality?
Article 13 hours ago 4 min read Scientist Profile: Jacquelyn Shuman Blazes New Trails in Fire Science
Article 1 day ago 4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Researchers think meltwater beneath Martian ice could support microbial life.
The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
“If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.
Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
Thriving Microcosms
On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
“This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-142
Share
Details
Last Updated Oct 17, 2024 Related Terms
Mars Astrobiology Jet Propulsion Laboratory Explore More
4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
With the initial images from each of the instruments aboard ESA’s EarthCARE satellite now in hand, it's time to reveal how these four advanced sensors work in synergy to measure exactly how clouds and aerosols influence the heating and cooling of our atmosphere.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.