Jump to content

Is Deep State silencing Insiders that threaten 'UFOs are a National Security Threat' Narrative?


Recommended Posts

Posted

Recently, two insiders who had previously stated that some UFOs are reverse engineered spacecraft developed by major US aerospace corporations were silenced in different ways. 


disclousre%252C%2Bufo.png

This Exopolitics Today Podcast examines the April 6 retraction by former Air Force Electronics Specialist, Mike Turber, of his testimony asserting the 2004 Tic Tac Incident involved classified Air Force craft being tested against the Navy's USS Nimitz battle group. 

One week later on April 13, Mark McCandlish, widely known for his 2001 UFO Disclosure Project testimony about three Alien Reproduction Vehicles seen in 1988 at Edwards Air Force Base was found dead from a shot gun blast to the head. 

The podcast examines these two separate incidents in light of the coming June 2021 Intelligence Community UAP report to the US Senate Intelligence Committee, and whether there's a connection given they each threatened the emerging UFOs are a national security threat narrative that is being promoted by the mainstream media.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers use a flat aerogel array antenna to communicate with a geostationary satellite above the Earth during tests at NASA’s Glenn Research Center in Cleveland.Credit: NASA/Jordan Cochran NASA engineers are using one of the world’s lightest solid materials to construct an antenna that could be embedded into the skin of an aircraft, creating a more aerodynamic and reliable communication solution for drones and other future air transportation options. 
      Developed by NASA, this ultra-lightweight aerogel antenna is designed to enable satellite communications where power and space are limited. The aerogel is made up of flexible, high-performance plastics known as polymers. The design features high air content (95%) and offers a combination of light weight and strength. Researchers can adjust its properties to achieve either the flexibility of plastic wrap or the rigidity of plexiglass.
      “By removing the liquid portion of a gel, you’re left with this incredibly porous structure,” said Stephanie Vivod, a chemical engineer at NASA’s Glenn Research Center in Cleveland. “If you’ve ever made Jell-O, you’ve performed chemistry that’s similar to the first step of making an aerogel.”
      NASA sandwiched a layer of aerogel between a small circuit board and an array of thin, circular copper cells, then topped the design off with a type of film known for its electrical insulation properties. This innovation is known at NASA and in the aviation community as an active phased array aerogel antenna. 
      A sample of aerogel is folded to demonstrate its flexibility during testing at NASA’s Glenn Research Center in Cleveland.Credit: NASA In addition to decreasing drag by conforming to the shape of aircraft, aerogel antennas save weight and space and come with the ability to adjust their individual array elements to reduce signal interference. They are also less visually intrusive compared to other types of antennas, such as spikes and blades. The finished product looks like a honeycomb but lays flat on an aircraft’s surface.
      In the summer of 2024, researchers tested a rigid version of the antenna on a Britten-Norman Defender aircraft during an in-flight demonstration with the U.S. Navy at Naval Air Station Patuxent River in Maryland.
      A Britten-Norman Defender aircraft outfitted with an advanced phased array antenna prototype for a flight test in summer 2024. The aircraft was used to verify data transmission quality and communications link resiliency with a low Earth orbit satellite.Credit: U.S. Navy Then, last October, researchers at NASA Glenn and the satellite communications firm Eutelsat America Corp., of Houston, began ground testing a version of the antenna mounted to a platform. The team successfully connected with a Eutelsat satellite in geostationary orbit, which bounced a signal back down to a satellite dish on a building at Glenn. Other demonstrations of the system at Glenn connected with a constellation of communications satellites operated in low Earth orbit by the data relay company Kepler. NASA researchers will design, build, and test a flexible version of the antenna later this year.
      “This is significant because we are able to use the same antenna to connect with two very different satellite systems,” said Glenn researcher Bryan Schoenholz. Low Earth orbit satellites are relatively close – at 1,200 miles from the surface – and move quickly around the planet. Geostationary satellites are much farther – more than 22,000 miles from the surface – but orbit at speeds matching the Earth’s rotation, so they appear to remain in a fixed position above the equator.
      NASA Glenn Research Center’s Sarah Dever and Mick Koch, electrical engineers, command an active phased array antenna to point toward a geostationary satellite. They used a flat version of an aerogel antenna during tests in October 2024.Credit: NASA/Jordan Cochran The satellite testing was crucial for analyzing the aerogel antenna concept’s potential real-world applications. When modern aircraft communicate with stations on the ground, those signals are often transmitted through satellite relays, which can come with delays and loss of communication. This NASA-developed technology will make sure these satellite links are not disrupted during flight as the aerogel antenna’s beam is a concentrated flow of radio waves that can be electronically steered with precision to maintain the connection.
      As new types of air transportation options are brought to the market and U.S airspace – from the small, piloted aircraft of today to the autonomous air taxis and delivery drones of tomorrow – these kinds of steady connections will become increasingly important. That’s why NASA’s Advanced Air Mobility mission and Transformative Aeronautics Concepts program are supporting research like the aerogel antennas that can boost industry efforts to safely expand the emerging marketplace for these transportation systems.
      “If an autonomous air taxi or drone flight loses its communications link, we have a very unsafe situation,” Schoenholz said. “We can’t afford a ‘dropped call’ up there because that connection is critical to the safety of the flight.”
      Schoenholz, Vivod, and others work on NASA’s Antenna Deployment and Optimization Technologies activity within the Transformational Tools and Technologies project. The activity aims to develop technologies that reduce the risk of radio frequency interference from air taxis, drones, commercial passenger jets, and other aircraft in increasingly crowded airspace.
      Explore More
      2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California
      Article 4 days ago 4 min read NASA Glenn to Test Air Quality Monitors Aboard Space Station
      Article 4 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 5 days ago View the full article
    • By NASA
      NASA Deep Space Station 43 (DSS-43), a 230-foot-wide (70-meter-wide) radio antenna at NASA’s Deep Space Network facility in Canberra, Australia, is seen in this March 4, 2020, image. DSS-43 was more than six times as sensitive as the original antenna at the Canberra complex, so it could communicate with spacecraft at greater distances from Earth. In fact, Canberra is the only complex that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      As the Canberra facility celebrated its 60th anniversary on March 19, 2025, work began on a new radio antenna. Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
      Image credit: NASA
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The radio antennas of NASA’s Canberra Deep Space Communications Complex are lo-cated near the Australian capital. It’s one of three Deep Space Network facilities around the world that keep the agency in contact with dozens of space missions Located at Tidbinbilla Nature Reserve near the Australian capital city, the Canberra complex joined the Deep Space Network on March 19, 1965, with one 85-foot-wide (26-meter-wide) radio antenna. The dish, called Deep Space Station 42, was decommis-sioned in 2000. This photograph shows the facility in 1965.NASA Canberra joined the global network in 1965 and operates four radio antennas. Now, preparations have begun on its fifth as NASA works to increase the network’s capacity.
      NASA’s Deep Space Network facility in Canberra, Australia celebrated its 60th anniversary on March 19 while also breaking ground on a new radio antenna. The pair of achievements are major milestones for the network, which communicates with spacecraft all over the solar system using giant dish antennas located at three complexes around the globe.
      Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      Suzanne Dodd, the director for the Interplanetary Network Directorate at JPL, addresses an audience at the Deep Space Network’s Canberra complex on March 19, 2025. That day marked 60 years since the Australian facility joined the network.NASA “As we look back on 60 years of incredible accomplishments at Canberra, the groundbreaking of a new antenna is a symbol for the next 60 years of scientific discovery,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “Building cutting-edge antennas is also a symbol of how the Deep Space Network embraces new technologies to enable the exploration of a growing fleet of space missions.”
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna. 
      Canberra’s Role
      The Deep Space Network was officially founded on Dec. 24, 1963, when NASA’s early ground stations, including Goldstone, were connected to the new network control center at the agency’s Jet Propulsion Laboratory in Southern California. Called the Space Flight Operations Facility, that building remains the center through which data from the three global complexes flows.
      The Madrid facility joined in 1964, and Canberra went online in 1965, going on to help support hundreds of missions, including the Apollo Moon landings.
      Three eye-catching posters featuring the larger 230-foot (70-meter) antennas located at the three Deep Space Network complexes around the world.NASA/JPL-Caltech “Canberra has played a crucial part in tracking, communicating, and collecting data from some of the most momentous missions in space history,” said Kevin Ferguson, director of the Canberra Deep Space Communication Complex. “As the network continues to advance and grow, Canberra will continue to play a key role in supporting humanity’s exploration of the cosmos.”
      By being spaced equidistant from one another around the globe, the complexes can provide continual coverage of spacecraft, no matter where they are in the solar system as Earth rotates. There is an exception, however: Due to Canberra’s location in the Southern Hemisphere, it is the only one that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      New Technologies
      In addition to constructing more antennas like Canberra’s Deep Space Station 33, NASA is looking to the future by also experimenting with laser, or optical, communications to enable significantly more data to flow to and from Earth. The Deep Space Network currently relies on radio frequencies to communicate, but laser operates at a higher frequency, allowing more data to be transmitted.
      As part of that effort, NASA is flying the laser-based Deep Space Optical Communications experiment with the agency’s Psyche mission. Since the October 2023 launch, it has demonstrated high data rates over record-breaking distances and downlinked ultra-high definition streaming video from deep space.
      “These new technologies have the potential to boost the science and exploration returns of missions traveling throughout the solar system,” said Amy Smith, deputy project manager for the Deep Space Networkat JPL, which manages the network. “Laser and radio communications could even be combined to build hybrid antennas, or dishes that can communicate using both radio and optical frequencies at the same time. That could be a game changer for NASA.”
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn/
      NASA’s New Deep Space Network Antenna Has Its Crowning Moment NASA’s New Experimental Antenna Tracks Deep Space Laser VIDEO: How Do We Know Where Faraway Spacecraft Are? News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-048
      Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Share
      Details
      Last Updated Apr 08, 2025 Related Terms
      Deep Space Network Jet Propulsion Laboratory Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      These Firm Fixed-Price, Indefinite-Delivery Requirements contracts were awarded to SpaceX, United Launch Services, and Blue Origin to provide critical space support to meet national security objectives.

      View the full article
    • By Space Force
      This exercise was designed to evaluate and refine tactical movements that have been instilled over the past several months, ensuring security forces Airmen are prepared for a deployed environment.

      View the full article
  • Check out these Videos

×
×
  • Create New...