Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      For astronauts aboard the International Space Station, staying connected to loved ones and maintaining a sense of normalcy is critical. That is where Tandra Gill Spain, a computer resources senior project manager in NASA’s Avionics and Software Office, comes in. Spain leads the integration of applications on Apple devices and the hardware integration on the Joint Station Local Area Network, which connects the systems from various space agencies on the International Space Station. She also provides technical lead support to the Systems Engineering and Space Operations Computing teams and certifies hardware for use on the orbiting laboratory. 

      Spain shares about her career with NASA and more. Read on to learn about her story, her favorite project, and the advice she has for the next generation of explorers. 
      Tandra Spain’s official NASA portrait. NASA Where are you from? 
      I am from Milwaukee, Wisconsin. 

      Tell us about your role at NASA. 
      I am the Apple subsystem manager where I lead the integration of applications on Apple devices as well as the hardware integration on the Joint Station Local Area Network. We use a variety of different software but I work specifically with our Apple products. I also provide technical lead support to the Systems Engineering and Space Operations Computing teams. In addition, I select and oversee the certification of hardware for use on the International Space Station, and I research commonly used technology and assess applicability to space operations.   

      How would you describe your job to family or friends who may not be familiar with NASA? 
      I normalize living and working in space by providing the comforts and conveniences of living on Earth.
      Tandra spain
      Computer Resources Senior Project Manager
      I get the opportunity to provide the iPads and associated applications that give astronauts the resources to access the internet. Having access to the internet affords them the opportunity to stay as connected as they desire with what is going on back home on Earth (e.g., stream media content, stay in touch with family and friends, and even pay bills). I also provide hardware such as Bluetooth speakers, AirPods, video projectors, and screens. 

      How long have you been working for NASA? 
      I have been with the agency for 30 years, including 22 years as a contractor. 
      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      I have found that there is a place for just about everyone at NASA, therefore, follow your passion.  Although many of us are, you don’t have to be a scientist or engineer to work at NASA. Yearn to learn.  Pause and listen to those around you. You don’t know what you don’t know, and you will be amazed what gems you’ll learn in the most unexpected situations. 

      Additionally, be flexible and find gratitude in every experience. Many of the roles that I’ve had over the years didn’t come from a well-crafted, laid-out plan that I executed, but came from taking advantage of the opportunities that presented themselves and doing them to the best of my ability. 
      Tandra Spain and her husband, Ivan, with NASA astronaut and Flight Director TJ Creamer when she was awarded the Silver Snoopy Award. What was your path to NASA? 
      I moved to Houston to work at NASA’s Johnson Space Center immediately upon graduating from college. 

      Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?  
      I spent over half of my career in the Astronaut Office, and I’ve been influenced in different ways by different people, so it wouldn’t be fair to pick just one! 

      What is your favorite NASA memory? 
      I’ve worked on so many meaningful projects, but there are two recent projects that stand out.

      Humans were not created to be alone, and connection is extremely important. I was able to provide a telehealth platform for astronauts to autonomously video conference with friends and family whenever an internet connection is available. Prior to having this capability, crew were limited to one scheduled video conference a week. It makes me emotional to think that we have moms and dads orbiting the Earth on the space station and they can see their babies before they go to bed, when they wake up in the morning, or even in the middle of the night if needed.  

      In addition, since iPads are used for work as well as personal activities on station, it is important for my team to be able to efficiently keep the applications and security patches up to date. We completed the software integration and are in the process of wrapping up the certification of the Mac Mini to provide this capability. This will allow us to keep up with all software updates that Apple releases on a regular basis and minimize the amount of crew and flight controller team time associated with the task by approximately 85%. 
      Tandra Spain, her mother, Marva Herndon, and her daughter, Sasha, at her daughter’s high school graduation in 2024. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth? 
      When I speak to the public about the space station, I like to compare our everyday lives on Earth to life on the station and highlight the use of technology to maintain the connection to those on Earth. For example, most people have a phone. Besides making a phone call, what do you use your phone for? It is amazing to know that the same capabilities exist on station, such as using apps, participating in parent teacher conferences, and more. 

      If you could have dinner with any astronaut, past or present, who would it be? 
      I would have dinner with NASA astronaut Ron McNair. He graduated from the same university as I did, and I’ve heard great stories about him. 

      Do you have a favorite space-related memory or moment that stands out to you? 
      As I mentioned previously, human connection is extremely important. As an engineer in the Astronaut Office, I worked on a project that provided more frequent email updates when Ku-Band communication was available. Previously, email was synced two to three times a day, and less on the weekend. When the capability went active, I sent the first email exchange. 

      What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?  
      There have been so many projects over the past 30 years that I don’t think I could select just one. There is something however, that I’ve done on many occasions that has brought me pure joy, which is attending outreach events as Johnson’s “Cosmo” mascot, especially Houston Astros games.    
      Tandra Spain representing NASA as “Cosmo” the astronaut mascot at a Houston Astros baseball game. What are your hobbies/things you enjoy outside of work? 
      I enjoy crafting, traveling, mentoring students in Pearland Independent School District, spending time with family, and my Rooted Together community. 

      Day launch or night launch?  
      Night launch! 

      Favorite space movie? 
      Star Wars (the original version) 

      NASA “worm” or “meatball” logo? 
      Meatball 
      Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.  

      Sign up for our weekly email newsletter to get the updates delivered directly to you.  

      Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.  
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      With more than 17 years of experience at NASA, Lindsai Bland has been an integral part of the agency, contributing to multiple Earth observing system missions at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Now, Bland ensures the agency’s communications and navigation resources meet overall needs and requirements as the Mission Operations Interface Lead for NASA’s SCaN (Space Communications and Navigation) program. 

      This sunset photo shows Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California, part of NASA’s Deep Space Network. The network’s three complexes around the globe support communications with dozens of deep space missions. DSS-14 is also the agency’s Goldstone Solar System Radar, which is used to observe asteroids that come close to Earth. The program, managed through the agency’s Space Operations Mission Directorate, is responsible for all of NASA’s space communications operations, including the Near Space Network and Deep Space Network, which have enabled the success of more than 100 NASA and non-NASA missions. Astronauts aboard the International Space Station, missions monitoring Earth’s weather and effects of climate change, and spacecraft exploring the Moon and beyond all depend on NASA’s Near Space and Deep Space Networks to provide robust communications services. As interface lead, Bland works with teams to guarantee that critical data is transmitted between spacecraft and desired control center.  

      “Working with the SCaN program gives me the opportunity to be a part of a variety of mission types with endless science objectives,” said Bland. “Joining this team has been a highlight of my career, and tackling new challenges has been incredibly rewarding.” 
      Looking ahead, Bland envisions that NASA will persevere in expanding the boundaries of space exploration, especially as the agency partners with international and U.S. industry in support of commercially owned and operated low Earth orbit destinations. 

      Lindsai Bland, Mission Operations Interface Lead for the Space Communications and Navigation Division
      “I think NASA will continue to push the boundaries of the aerospace industry and physical science studies,” she says. “NASA will take risks in exploration, bringing along industries and businesses to help further our goals.” 

      Outside of her work at NASA, Bland is passionate about the arts. She was an avid dancer from a young age, training in ballet, modern, and jazz. Bland also enjoys making her own cosmetics. She believes strongly in giving back to her community and dedicates some of her personal time to community services effort around Montgomery County, Maryland. 

      Bland’s career at NASA is a testament to her dedication, expertise, and passion for science and space exploration. Bland will continue to NASA’s mission in expand our understanding and study of our solar system and universe in captivating new ways. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 

      To learn more about NASA’s Space Operation Mission Directorate, visit:  
      https://www.nasa.gov/directorates/space-operations

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      If you tell Lauren Best Ameen something is hard and cannot be done, she will likely reply, “Watch me.”  
      As deputy manager for the Cryogenic Fluid Management Portfolio Project Office at NASA’s Glenn Research Center in Cleveland, Ameen and her team look for innovative ways to keep rocket fuel cold for long-duration missions. Work in this area could be important in enabling astronauts to go to the Moon and Mars. 
      Watch the NASA Faces of Technology video that highlights her work:
      For more information about NASA’s Cryogenic Fluid Management Program, visit this page.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 3 min read NASA Opens New Challenge to Support Climate-Minded Business Models
      Article 5 days ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Knowing whether or not a planet elsewhere in the galaxy could potentially be habitable requires knowing a lot about that planet’s sun. Sarah Peacock relies on computer models to assess stars’ radiation, which can have a major influence on whether or not one of these exoplanets has breathable atmosphere.
      Name: Sarah Peacock
      Title: Assistant Research Scientist
      Formal Job Classification: Astrophysicist
      Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)
      Sarah Peacock is a research scientist with the Exoplanets and Stellar Astrophysics Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md.Courtesy of Sarah Peacock What do you do and what is most interesting about your role here at Goddard?
      My overarching research goal is to find habitable planets in other solar systems. To do this, I study the high-energy radiation that specific stars produce to help determine if life can exist on any earthlike planets that orbit them.
      What is your educational background?
      In 2013, I received a Bachelor of Arts in astrophysics from the University of Virginia. I received both my master’s and doctorate degrees from the Lunar and Planetary Laboratory at the University of Arizona in 2016 and 2019, respectively.
      What drew you to study the stars?
      In high school, I took an astronomy class. We had a planetarium in our school and I had a wonderful teacher who inspired me to fall in love with the stars. She also showed us how many of the Harry Potter characters are drawn from the constellations and that spoke to my heart because I am a Harry Potter fan!
      How did you come to Goddard?
      I started at Goddard as a NASA post-doctoral fellow in July 2020, but I first saw the center the day before Goddard shut down due to COVID.
      How does high-energy radiation show you what planets outside our solar system might be habitable?
      High-energy radiation can cause a planet to lose its atmosphere. If a planet is exposed to too much high-energy radiation, the atmosphere can be blown off, and if there is no atmosphere, then there is nothing for life as we know it to breathe.
      We cannot directly measure the specific radiation that I study, so we have to model it. The universe has so many stars, and almost all stars host a planet. There are approximately 5,500 confirmed exoplanets so far, with an additional 7,500 unconfirmed exoplanets.
      I help identify systems that either have too much radiation, so planets in the habitable zone (the region around a star where liquid water could exist on a planet’s surface) are probably lifeless, or systems that have radiation levels that are safer. Ultimately, my research helps narrow down the most likely systems to host planets that should have stable atmospheres.
      Sarah Peacock research goal is to find habitable planets in other solar systems.Courtesy of Sarah Peacock Where does your data come from?
      I predominately use data from the Hubble Space Telescope and from the now-retired spacecraft GALEX. My work itself is more theory-focused though: I create a modeled stellar spectrum across all wavelengths and use observations to validate my modeling.
      What other areas of research are you involved in?
      I am working with a team analyzing data from the James Webb Space Telescope to see if earthlike planets around M-type stars (a star that is cooler and smaller than the Sun) have atmospheres and, if so, what the composition of those atmospheres is. An exciting result from this work is that we may have detected water in the atmosphere of a rocky planet for the first time ever. However, we cannot yet distinguish with our current observations if that water comes from the planet or from spots on the star (starspots on this host star are cold enough for water to exist in gas form).
      I am also helping manage a NASA Innovative Advance Concept (NIAC) study led by my mentor, Ken Carpenter, to work on the Artemis Enabled Stellar Imager (AeSI). If selected for further development, this imager would be an ultraviolet/optical interferometer located on the South Pole of the Moon. With this telescope, we would be able to map the surface of stars, image accretion disks, and image the centers of Active Galactic Nuclei.
      As a relatively new employee to Goddard, what have been your first impressions?
      Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming. Starting during the pandemic, I was worried about feeling isolated, but instead, I was blown away by how many folks in my lab reached out to set up calls to introduce themselves and suggest opportunities for collaboration. It made me feel welcome.
      Who is your mentor and what did your mentor advise you?
      Ken Carpenter is my mentor. He encourages me to pursue my aspirations. He supports letting me chart my own path and being exposed to many different areas of research. I thank Ken for his support and encouragement and for including me on his projects.
      “Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming.”Courtesy of Sarah Peacock What do you do for fun?
      I am a new mom, so my usual hobbies are on pause! Right now, fun is taking care of my baby and introducing life experiences to him.
      As a recently selected member of the Executive Committee for NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG), what are your responsibilities?
      The NASA ExoPAG is responsible for soliciting and coordinating scientific community input into the development and execution of NASA’s exoplanet exploration program. We solicit opinions and advice from any scientist who studies exoplanets. We are a bridge between NASA’s exoplanet scientists and NASA Headquarters in Washington.
      What is a fun fact about yourself?
      I got married the same day I defended my Ph.D. I had my defense in the morning and got married in the afternoon at the courthouse.
      Who is your favorite author?
      I love to read; I always have three books going. My favorite author is Louise Penny, who writes mysteries, but I read all genres. Right now, I am reading a biography about Marjorie Merriweather Post.
      What is your favorite quote?
      “The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful.” —Box and Draper 1987
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Dec 10, 2024 Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 2 hours ago 5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across North America, from the western…
      Article 6 hours ago 17 min read 30 Years Ago: NASA Selects its 15th Group of Astronauts 
      Article 22 hours ago View the full article
    • By NASA
      9 Min Read Towards Autonomous Surface Missions on Ocean Worlds
      Artist’s concept image of a spacecraft lander with a robot arm on the surface of Europa. Credits:
      NASA/JPL – Caltech Through advanced autonomy testbed programs, NASA is setting the groundwork for one of its top priorities—the search for signs of life and potentially habitable bodies in our solar system and beyond. The prime destinations for such exploration are bodies containing liquid water, such as Jupiter’s moon Europa and Saturn’s moon Enceladus. Initial missions to the surfaces of these “ocean worlds” will be robotic and require a high degree of onboard autonomy due to long Earth-communication lags and blackouts, harsh surface environments, and limited battery life.
      Technologies that can enable spacecraft autonomy generally fall under the umbrella of Artificial Intelligence (AI) and have been evolving rapidly in recent years. Many such technologies, including machine learning, causal reasoning, and generative AI, are being advanced at non-NASA institutions.  
      NASA started a program in 2018 to take advantage of these advancements to enable future icy world missions. It sponsored the development of the physical Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA’s Jet Propulsion Laboratory in Southern California and the virtual Ocean Worlds Autonomy Testbed for Exploration, Research, and Simulation (OceanWATERS) at NASA’s Ames Research Center in Silicon Valley, California.
      NASA solicited applications for its Autonomous Robotics Research for Ocean Worlds (ARROW) program in 2020, and for the Concepts for Ocean worlds Life Detection Technology (COLDTech) program in 2021. Six research teams, based at universities and companies throughout the United States, were chosen to develop and demonstrate autonomy solutions on OWLAT and OceanWATERS. These two- to three-year projects are now complete and have addressed a wide variety of autonomy challenges faced by potential ocean world surface missions.
      OWLAT
      OWLAT is designed to simulate a spacecraft lander with a robotic arm for science operations on an ocean world body. The overall OWLAT architecture including hardware and software components is shown in Figure 1. Each of the OWLAT components is detailed below.
      Figure 1. The software and hardware components of the Ocean Worlds Lander Autonomy Testbed and the relationships between them. NASA/JPL – Caltech The hardware version of OWLAT (shown in Figure 2) is designed to physically simulate motions of a lander as operations are performed in a low-gravity environment using a six degrees-of-freedom (DOF) Stewart platform. A seven DOF robot arm is mounted on the lander to perform sampling and other science operations that interact with the environment. A camera mounted on a pan-and-tilt unit is used for perception. The testbed also has a suite of onboard force/torque sensors to measure motion and reaction forces as the lander interacts with the environment. Control algorithms implemented on the testbed enable it to exhibit dynamics behavior as if it were a lightweight arm on a lander operating in different gravitational environments.
      Figure 2. The Ocean Worlds Lander Autonomy Testbed. A scoop is mounted to the end of the testbed robot arm. NASA/JPL – Caltech The team also developed a set of tools and instruments (shown in Figure 3) to enable the performance of science operations using the testbed. These various tools can be mounted to the end of the robot arm via a quick-connect-disconnect mechanism. The testbed workspace where sampling and other science operations are conducted incorporates an environment designed to represent the scene and surface simulant material potentially found on ocean worlds.
      Figure 3. Tools and instruments designed to be used with the testbed. NASA/JPL – Caltech The software-only version of OWLAT models, visualizes, and provides telemetry from a high-fidelity dynamics simulator based on the Dynamics And Real-Time Simulation (DARTS) physics engine developed at JPL. It replicates the behavior of the physical testbed in response to commands and provides telemetry to the autonomy software. A visualization from the simulator is shown on Figure 4.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech The autonomy software module shown at the top in Figure 1 interacts with the testbed through a Robot Operating System (ROS)-based interface to issue commands and receive telemetry. This interface is defined to be identical to the OceanWATERS interface. Commands received from the autonomy module are processed through the dispatcher/scheduler/controller module (blue box in Figure 1) and used to command either the physical hardware version of the testbed or the dynamics simulation (software version) of the testbed. Sensor information from the operation of either the software-only or physical testbed is reported back to the autonomy module using a defined telemetry interface. A safety and performance monitoring and evaluation software module (red box in Figure 1) ensures that the testbed is kept within its operating bounds. Any commands causing out of bounds behavior and anomalies are reported as faults to the autonomy software module.
      Figure 5. Erica Tevere (at the operator’s station) and Ashish Goel (at the robot arm) setting up the OWLAT testbed for use. NASA/JPL – Caltech OceanWATERS
      At the time of the OceanWATERS project’s inception, Jupiter’s moon Europa was planetary science’s first choice in searching for life. Based on ROS, OceanWATERS is a software tool that provides a visual and physical simulation of a robotic lander on the surface of Europa (see Figure 6). OceanWATERS realistically simulates Europa’s celestial sphere and sunlight, both direct and indirect. Because we don’t yet have detailed information about the surface of Europa, users can select from terrain models with a variety of surface and material properties. One of these models is a digital replication of a portion of the Atacama Desert in Chile, an area considered a potential Earth-analog for some extraterrestrial surfaces.
      Figure 6. Screenshot of OceanWATERS. NASA/JPL – Caltech JPL’s Europa Lander Study of 2016, a guiding document for the development of OceanWATERS, describes a planetary lander whose purpose is collecting subsurface regolith/ice samples, analyzing them with onboard science instruments, and transmitting results of the analysis to Earth.
      The simulated lander in OceanWATERS has an antenna mast that pans and tilts; attached to it are stereo cameras and spotlights. It has a 6 degree-of-freedom arm with two interchangeable end effectors—a grinder designed for digging trenches, and a scoop for collecting ground material. The lander is powered by a simulated non-rechargeable battery pack. Power consumption, the battery’s state, and its remaining life are regularly predicted with the Generic Software Architecture for Prognostics (GSAP) tool. To simulate degraded or broken subsystems, a variety of faults (e.g., a frozen arm joint or overheating battery) can be “injected” into the simulation by the user; some faults can also occur “naturally” as the simulation progresses, e.g., if components become over-stressed. All the operations and telemetry (data measurements) of the lander are accessible via an interface that external autonomy software modules can use to command the lander and understand its state. (OceanWATERS and OWLAT share a unified autonomy interface based on ROS.) The OceanWATERS package includes one basic autonomy module, a facility for executing plans (autonomy specifications) written in the PLan EXecution Interchange Language, or PLEXIL. PLEXIL and GSAP are both open-source software packages developed at Ames and available on GitHub, as is OceanWATERS.
      Mission operations that can be simulated by OceanWATERS include visually surveying the landing site, poking at the ground to determine its hardness, digging a trench, and scooping ground material that can be discarded or deposited in a sample collection bin. Communication with Earth, sample analysis, and other operations of a real lander mission, are not presently modeled in OceanWATERS except for their estimated power consumption. Figure 7 is a video of OceanWATERS running a sample mission scenario using the Atacama-based terrain model.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech Because of Earth’s distance from the ocean worlds and the resulting communication lag, a planetary lander should be programmed with at least enough information to begin its mission. But there will be situation-specific challenges that will require onboard intelligence, such as deciding exactly where and how to collect samples, dealing with unexpected issues and hardware faults, and prioritizing operations based on remaining power. 
      Results
      All six of the research teams funded by the ARROW and COLDTech programs used OceanWATERS to develop ocean world lander autonomy technology and three of those teams also used OWLAT. The products of these efforts were published in technical papers, and resulted in development of software that may be used or adapted for actual ocean world lander missions in the future. The following table summarizes the ARROW and COLDTech efforts.
        Principal Investigator (PI) PI Institution Project Testbed Used Purpose of Project ARROW Projects Jonathan Bohren Honeybee Robotics Stochastic PLEXIL (SPLEXIL) OceanWATERS Extended PLEXIL with stochastic decision-making capabilities by employing reinforcement learning techniques. Pooyan Jamshidi University of South Carolina Resource Adaptive Software Purpose-Built for Extraordinary Robotic Research Yields (RASPBERRY SI) OceanWATERS & OWLAT Developed software algorithms and tools for fault root cause identification, causal debugging, causal optimization, and causal-induced verification. COLDTech Projects Eric Dixon Lockheed Martin Causal And Reinforcement Learning (CARL) for COLDTech OceanWATERS Integrated a model of JPL’s mission-ready Cold Operable Lunar Deployable Arm (COLDarm) into OceanWATERS and applied image analysis, causal reasoning, and machine learning models to identify and mitigate the root causes of faults, such as ice buildup on the arm’s end effector. Jay McMahon University of Colorado Robust Exploration with Autonomous Science On-board, Ranked Evaluation of Contingent Opportunities for Uninterrupted Remote Science Exploration (REASON-RECOURSE) OceanWATERS Applied automated planning with formal methods to maximize science return of the lander while minimizing communication with ground team on Earth. Melkior Ornik U Illinois, Urbana-Champaign aDaptive, ResIlient Learning-enabLed oceAn World AutonomY (DRILLAWAY) OceanWATERS & OWLAT Developed autonomous adaptation to novel terrains and selecting scooping actions based on the available image data and limited experience by transferring the scooping procedure learned from a low-fidelity testbed to the high-fidelity OWLAT testbed. Joel Burdick Caltech Robust, Explainable Autonomy for Scientific Icy Moon Operations (REASIMO) OceanWATERS & OWLAT Developed autonomous 1) detection and identification of off-nominal conditions and procedures for recovery from those conditions, and 2) sample site selection Acknowledgements: The portion of the research carried out at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration (80NM0018D0004).  The portion of the research carried out by employees of KBR Wyle Services LLC at NASA Ames Research Center was performed under a contract with the National Aeronautics and Space Administration (80ARC020D0010). Both were funded by the Planetary Science Division ARROW and COLDTech programs.
      Project Leads: Hari Nayar (NASA Jet Propulsion Laboratory, California Institute of Technology), K. Michael Dalal (KBR, Inc. at NASA Ames Research Center)
      Sponsoring Organizations: NASA SMD PESTO
      View the full article
  • Check out these Videos

×
×
  • Create New...