Members Can Post Anonymously On This Site
ESA's technical heart
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Dr. Rainee Simons (right) and Dr. Félix Miranda work together to create technology supporting heart health at NASA’s Glenn Research Center in Cleveland.Credit: NASA Prioritizing health is important on Earth, and it’s even more important in space. Exploring beyond the Earth’s surface exposes humans to conditions that can impact blood pressure, bone density, immune health, and much more. With this in mind, two NASA inventors joined forces 20 years ago to create a way to someday monitor astronaut heart health on long-duration spaceflight missions. This technology is now being used to monitor the health of patients with heart failure on Earth through a commercial product that is slated to launch in late 2024.
NASA inventors Dr. Rainee Simons, senior microwave communications engineer, and Dr. Félix Miranda, deputy chief of the Communications and Intelligent Systems Division, applied their expertise in radio frequency integrated circuits and antennas to create a miniature implantable sensor system to keep track of astronaut health in space. The technology, which was created at NASA’s Glenn Research Center in Cleveland with seed funds from the agency’s Technology Transfer Office, consists of a small bio-implanted sensor that can transmit a person’s health status from a sensor to a handheld device. The sensor is battery-less and wireless.
“You’re able to insert the sensor and bring it up to the heart or the aorta like a stent – the same process as in a stent implant,” Simons said. “No major surgery is needed for implantation, and operating the external handheld device, by the patient, is simple and easy.”
After Glenn patented the invention, Dr. Anthony Nunez, a heart surgeon, and Harry Rowland, a mechanical engineer, licensed the technology and founded a digital health medical technology company in 2007 called Endotronix, now an Edwards Lifesciences company. The company focuses on enabling proactive heart failure management with data-driven patient-to-physician solutions that detect dangers, based on the Glenn technology. The Endotronix primary monitoring system is called the Cordella Pulmonary Artery (PA) Sensor System. Dr. Nunez became aware of the technology while reading a technical journal that featured the concept, and he saw parallels that could be used in the medical technology industry.
The concept has proven to be an aid for heart failure management through several clinical trials, and patients have experienced improvements in their quality of life. Based on the outcome of Endotronix’s clinical testing to demonstrate safety and effectiveness, in June 2024 the U.S. Food and Drug Administration granted premarket approval to the Cordella PA Sensor System. The system is meant to help clinicians remotely assess, treat, and manage heart failure in patients at home with the goal of reducing hospitalizations.
“If you look at the statistics of how many people have congestive heart failure, high blood pressure… it’s a lot of people,” Miranda said. “To have the medical community saying we have a device that started from NASA’s intellectual property – and it could help people worldwide to be healthy, to enjoy life, to go about their business – is highly gratifying, and it’s very consistent with NASA’s mission to do work for the benefit of all.”
Explore More
2 min read Controlled Propulsion for Gentle Landings
A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
Article 40 mins ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation
NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space…
Article 21 hours ago 4 min read Lunar Autonomy Mobility Pathfinder: An OTPS-Sponsored Workshop
Article 1 day ago View the full article
-
By Space Force
History was made on Aug. 16, as six Space Force students out of basic military training became the first Guardians to graduate technical training at the U.S. Air Force Honor Guard at Joint Base Anacostia-Bolling.
View the full article
-
By NASA
2 min read
Hubble Examines an Active Galaxy Near the Lion’s Heart
This NASA/ESA Hubble Space Telescope features the elliptical galaxy Messier 105. ESA/Hubble & NASA, C. Sarazin et al. It might appear featureless and unexciting at first glance, but NASA/ESA Hubble Space Telescope observations of this elliptical galaxy — known as Messier 105 — show that the stars near the galaxy’s center are moving very rapidly. Astronomers have concluded that these stars are zooming around a supermassive black hole with an estimated mass of 200 million Suns! This black hole releases huge amounts of energy as it consumes matter falling into it, making the system an active galactic nucleus that causes the galaxy’s center to shine far brighter than its surroundings.
Hubble also surprised astronomers by revealing a few young stars and clusters in Messier 105, a galaxy thought to be “dead” and incapable of star formation. Astronomers now think that Messier 105 forms roughly one Sun-like star every 10,000 years. Astronomers also spotted star-forming activity in a vast ring of hydrogen gas encircling both Messier 105 and its closest neighbor, the lenticular galaxy NGC 3384.
Discovered in 1781, Messier 105 lies about 30 million light-years away in the constellation of Leo (The Lion) and is the brightest elliptical galaxy within the Leo I galaxy group.
Text Credit: European Space Agency (ESA)
Download the image
Explore More
Hubble Space Telescope
Hubble’s Galaxies
Hubble’s Messier Catalog: Messier 105
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Share
Details
Last Updated Jun 27, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Explore More With Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
What Did Hubble See on Your Birthday?
Name That Nebula
Hubble E-books
View the full article
-
By NASA
When/Where
August 27-28, 2024
NASA Jet Propulsion Laboratory in Pasadena, CA
Who may attend?
Invited participants from the NASA Centers, NASA HQ, and the broader community of IR technology developers and stakeholders. All participants must be U.S. Persons – the meeting will be held at the CUI level and presentations may contain ITAR material.
Registration will be available, soon!
Purpose
The purpose of the TIM is to openly discuss and review the current state of IR technology in the 2-1000 µm wavelength range. This workshop is intended to evaluate existing relevant NASA-needed technologies and developments, identify opportunities for investments and collaboration, and formulate agency-level strategies to meet its near- and far- term needs for science and exploration missions. The presentations and contact information list will be captured in a proceedings package that will be available to all attendees and NASA stakeholders.
Background
IR detector technology is critical for NASA’s future missions, many of which require state-of-the-art infrared payloads in support Science Mission Directorate (SMD), Space Technology Mission Directorate (STMD), and Exploration Mission Directorate (EOMD). IR sensors utilized in infrared missions span a wide gamut, including multispectral, polarimetric imaging, point-source detection, scanning dispersive hyperspectral imaging, staring interferometric hyperspectral imaging, and astronomical imaging. Space-qualified IR detectors are a leading item on NASA’s critical technology lists as they are key enablers for many science missions. The objectives and IR sensor needs for future NASA missions are described in the most recent decadal surveys for Earth Science, Planetary Science, Heliophysics, and Astronomy and Astrophysics:
Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 Solar and Space Physics: A Science for a Technological Society Pathways to Discovery in Astronomy and Astrophysics for the 2020s To promote knowledge sharing among science and engineering practitioners external- and internal-to NASA, the NASA Engineering and Safety Center (NESC) Sensors & Instrumentation Technical Discipline Team (S&I TDT) recently established an IR Detector Community of Practice (IR CoP).
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.