Jump to content

How to keep spacesuit ‘underwear’ clean?


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA For the 14th consecutive year, NASA received an unmodified, or “clean,” opinion from an external auditor on its fiscal year 2024 financial statements.
      The rating is the best possible audit opinion, certifying that NASA’s financial statements conform with Generally Accepted Accounting Principles for federal agencies and accurately present the agency’s financial position. The audit opinion reaffirms the agency’s commitment to transparency in the use of American taxpayers’ dollars.
      “For the 14th year in a row, NASA has delivered a reliable, accurate, and transparent report of our fiscal operations as we explore the unknown in air and space,” said NASA Administrator Bill Nelson. “I thank NASA’s Chief Financial Officer Margaret Schaus for her leadership, and I am proud that NASA continues to uphold the public’s trust in our goals, our missions, and our financial reporting practices. Such trust is critical to our agency’s success.”
      The 2024 Agency Financial Report provides key financial and performance information and demonstrates the agency’s commitment to transparency in the use of American taxpayers’ dollars. In addition, the 2024 report presents progress during the past year, and spotlights the array of NASA missions, objectives, and workforce advanced with these financial resources.
      “I am proud NASA has achieved its 14th consecutive clean bill of health on its financial statements,” said NASA Chief Financial Officer Margaret Schaus. “I want to recognize the outstanding commitment of our NASA team to ensuring sound stewardship and transparency over the resources entrusted to our agency.”
      In fiscal year 2024, NASA continued preparation for Artemis II, a mission to send four astronauts around the Moon as part of the Artemis campaign. The agency also publicly unveiled the X-59 quiet supersonic aircraft, which will change the way we travel, paving the way for a new generation of commercial aircraft that can travel faster than the speed of sound. Among other highlights, NASA built upon our longstanding efforts to study our Earth as a system, advancing our work on the NASA-Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) satellite. This joint mission between the agency and ISRO is the first radar of its kind in space to systematically map the Earth.
      For more information on NASA’s budget, visit:
      https://www.nasa.gov/budget
      -end-
      Meira Bernstein / Roxana Bardan
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / roxana.bardan@nasa.gov
      Share
      Details
      Last Updated Nov 15, 2024 LocationNASA Headquarters Related Terms
      NASA Headquarters Budget & Annual Reports Office of the Chief Financial Officer (OCFO) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Energy Program Manager for Facility Projects Wayne Thalasinos, left, stands with NASA Stennis Sustainability Team Lead Alvin Askew at the U.S. Department of Energy in Washington, D.C., on Oct. 30. The previous day, the Department of Energy announced NASA Stennis will receive a $1.95 million grant for an energy conservation project at the south Mississippi center. The Stennis Sustainability Team consists of NASA personnel and contract support. NASA members include Askew, Missy Ferguson and Teenia Perry. Contract members include Jordan McQueen (Synergy-Achieving Consolidated Operations and Maintenance); Michelle Bain (SACOM); Matt Medick (SACOM); Thomas Mitchell (SACOM); Lincoln Gros (SACOM), and Erik Tucker (Leidos). NASA Stennis NASA’s Stennis Space Center has been awarded a highly competitive U.S. Department of Energy grant to transform its main administration building into a facility that produces as much renewable energy as it uses.
      Following an Oct. 29 announcement, NASA Stennis, located near Bay St. Louis, Mississippi, will receive $1.95 million through the Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Program. The grant will fund installation of a four-acre solar panel array onsite that can generate up to 1 megawatt of electricity.
      “This is a flagship project for our NASA center,” said NASA Stennis Director John Bailey. “It will provide renewable energy to help reduce our carbon footprint, contributing to NASA’s agencywide goal of zero greenhouse gas emissions by 2030.”
      The AFFECT Program awards grants to help the federal government achieve its goal of net-zero greenhouse gas emissions by all federal buildings by 2045. More than $1 billion in funding proposals was requested by federal agencies for the second, and final, phase of the initiative. A total of $149.87 million subsequently was awarded for 67 energy conservation and clean energy projects at federal facilities across 28 U.S. states and territories and in six international locations. NASA Stennis is the only agency in Mississippi to receive funding.  
      The site’s solar panel array will build on an $1.65 million energy conservation project already underway at the south Mississippi site to improve energy efficiency. The solar-generated electricity can be used in a number of ways, from powering facility lighting to running computers. The array also will connect to the electrical grid to allow any excess energy to be utilized elsewhere onsite.
      “This solar panel addition will further enhance our energy efficiency,” said NASA Stennis Sustainability Team Lead Alvin Askew. “By locating the solar photovoltaic array by the Emergency Operations Center, it also has potential future benefits in providing backup power to that facility during outages.”
      The NASA Stennis proposal was one of several submitted by NASA centers for agency consideration. Following an agency review process, NASA submitted multiple projects to the Department of Energy for grant consideration.
      “This was a very competitive process, and I am proud of the NASA Stennis Sustainability Team,” NASA Stennis Center Operations Director Michael Tubbs said. “The team’s hard work in recent years and its commitment to continuous improvement in onsite energy conversation laid the groundwork to qualify for this grant. Mr. Askew, in particular, continues to be a leader in creative thinking, helping us meet agency sustainability goals.”
      The NASA Stennis administration building was constructed in 2008 as a Leadership in Energy and Environmental Design-certified, all-electric facility and currently has net-zero emissions.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 1 day ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 1 day ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 1 day ago Share
      Details
      Last Updated Nov 14, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Keep Exploring Discover More Topics From NASA Stennis
      Multi-User Test Complex
      Propulsion Test Engineering
      NASA Stennis Front Door
      NASA Stennis Media Resources
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Just Keep Roving
      Image from Perseverance’s Right Navigation Camera, looking back towards rover tracks from past drives, into Jezero crater. The camera is located high on the rover mast, and here the rover is looking back in the direction of the Jezero crater floor. This image was acquired on October 4th, 2024 (Sol 1288) at the local mean solar time of 12:51:26. NASA/JPL-Caltech Throughout the past week, Perseverancehas continued marching up the Jezero crater rim. This steep ascent through the Martian regolith (soil) can prove to be slow driving for the rover, as the wheels can slip on the steepest areas. This is like trying to run up a hill of sand on a beach – with every step forward, you also slip back a little way down the hill! This just means the Science and Engineering teams work together closely to plan slow and steady drives through this tricky terrain.
      Driving through the Mount Ranier quadrangle, the team identified a relatively obstacle-free path to reach the crater rim which they designated Summerland Trail, aptly named from a very popular hiking trail that ascends Mount Ranier. Perseverance is trekking to the next waypoint near an outcrop of rocks called Pico Turquino, where the science team hopes to perform its next proximity science investigations with its instruments PIXL and back-online SHERLOC.
      While roving along Summerland Trail, Perseverance is constantly observing the surrounding terrain. SuperCam and Mastcam-Z have been observing rocks on the ground and on a distant hill, called Crystal Creek. In addition, during this time Perseverance can put its eyes to the sky to make observations of the sun and atmosphere. Last week, the Mastcam-Z camera captured images of Phobos (one of Mars’ two moons) transiting in front of the sun!
      This image, showing Phobos transiting in front of the sun, was acquired using Perseverance’s Left Mastcam-Z camera. Acquired on September 30th, 2024 (Sol 1285) at the local mean solar time of 11:10:04. NASA/JPL-Caltech/ASU While the Mars2020 team is itching to reach the ancient stratigraphy exposed in the crater rim, for now, the focus is on documenting our surroundings while navigating the ascent. 
      Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
      Reference Links
      Rover Tracks Image: Mars Perseverance Sol 1288: Right Navigation Camera (Navcam) Quadrangles: NASA’s Perseverance Mars Rover Mission Honors Navajo Language Hiking Trail: Summerland Trailhead (U.S. National Park Services) SHERLOC: Perseverance Matters – NASA Science Mars Moons – NASA Science Phobos Transit Image: Mars Perseverance Sol 1285 – Left Mastcam-Z Camera Crater Rim: Reaching New Heights to Unravel Deep Martian History! Share








      Details
      Last Updated Oct 17, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4334-4335: Planning with Popsicles — A Clipper Celebration!


      Article


      1 day ago
      4 min read Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images


      Article


      4 days ago
      3 min read Sols 4329-4330: Continuing Downhill


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Teams with NASA’s Exploration Ground Systems Program, in preparation for the agency’s Artemis II crewed mission to the Moon, begin installing the first of four emergency egress baskets on the mobile launcher at Launch Complex 39B at the agency’s Kennedy Space Center in Florida on Wednesday, Jan. 24, 2024. The baskets, similar to gondolas on ski lifts, are used in the case of a pad abort emergency to enable astronauts and other pad personnel a way to quickly escape away from the mobile launcher to the base of the pad and where waiting emergency transport vehicles will then drive them away.NASA/Isaac Watson Recently, teams with NASA’s Exploration Ground Systems (EGS) Program at the agency’s Kennedy Space Center met with engineering teams at a central Florida amusement park to share knowledge on a new braking system NASA is using for its launch pad emergency egress system for Artemis missions.
      “We have a new magnetic braking system for the Artemis emergency egress system and NASA hasn’t used this technology on the ground infrastructure side before to support launches,” said Jesse Berdis, mobile launcher 1 deputy project manager for EGS. “I realized we have neighbors 50 miles from us in Orlando that are essentially the world experts on magnetic braking systems.”
      For Artemis, teams will use a track cable that connects the mobile launcher to the terminus site near the perimeter of NASA Kennedy’s Launch Pad 39B, where four baskets, similar to gondola lifts, can ride down. This is where the magnetic braking system operates to help control the acceleration of the baskets in multiple weight and environmental conditions. At the pad terminus site, armored emergency response vehicles are stationed to take personnel safely away from the launch pad to a designated safe site  at Kennedy.
      Many roller coaster manufacturers employ the use of an “eddy current braking system,” which involves using magnetics to help slow down a vehicle. Though the applications used on the roller coasters differ slightly from what the EGS teams are using for Artemis, the concept is the same, explained Amanda Arrieta, mobile launcher 1 senior element engineer.
      However, unlike roller coasters which are typically in use daily for multiple hours on end, the Artemis emergency egress system is there for emergency situations only.
      “We don’t plan to ever run our system unless we’re testing it or performing maintenance,” Berdis said.
      Regardless of this, teams at Kennedy have ensured the system is able to function for years to come to support future Artemis missions.
      “The maintenance crews [at the amusement park] were awesome because they showed us their nightly, monthly, and yearly inspections on what they were doing,” Berdis said. “That gave our operations teams a really good foundation and baseline knowledge of what to expect when they maintain and operate this system for the Artemis missions.”
      Some of the conversations and suggestions teams shared include adding an acceleration sensor in the emergency egress baskets during testing. The sensor will help detect how fast the baskets are going when they ride down.
      The emergency egress system is one of several new additions the EGS team is implementing  to prepare for future crewed missions starting with Artemis II, and this system especially emphasizes the importance of safety.
      “We have a mission, and a part of that mission is in case of an emergency, which we don’t expect, is to protect our astronauts and supporting teams at the launch pad,” Berdis said. “We want our teams to be safe and, for any scenario we put them in, especially on the ground infrastructure side, it’s important for us to do our due diligence. That includes talking to other groups that are the experts in their field to ensure we have looked at all possibilities across the board to ensure our mission is a safe one for our teams.”
      During the Space Shuttle Program, teams used a similar system for the escape route astronauts and other personnel take in the event of an emergency during a launch countdown. However, instead of using a magnetic braking system for the baskets, teams used a mechanical braking system, which involved using a catch net and drag chain to slow and then halt the baskets sliding down the wire.
      For the agency’s Commercial Crew Program, SpaceX also uses a catch net and drag chain for its slidewire cable at NASA Kennedy’s Launch Complex 39A pad and a deployable chute at Space Launch Complex 40 at Cape Canaveral Space Force Station. Boeing and United Launch Alliance also use a slidewire, but instead of baskets, the team deploys seats, like riding down a zip line, that ride down the slide wires at Space Launch Complex 41 at Cape Canaveral Space Force Station.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      View the full article
    • By NASA
      An Axiom Space engineer wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit kneels to collect simulated lunar samples using a scoop during testing at NASA’s Johnson Space Center.Axiom Space As part of NASA’s Artemis campaign, the agency is working to land astronauts on the lunar surface during Artemis III, laying the groundwork for a long-term human presence at the Moon for the benefit of all. When the Artemis astronauts take their first steps near the South Pole of the Moon, they will be wearing a spacesuit developed by Axiom Space. In the time since NASA selected the company to provide the spacesuit and supporting systems for Artemis III, Axiom Space has continued to progress with spacesuit design and testing. 
      In late 2023, NASA and Axiom Space test subjects wore the next-generation lunar spacesuit during testing at NASA’s Johnson Space Center in Houston, where they performed a number of maneuverability tasks that will be required during moonwalks, such as bending down to pick up lunar samples while using lunar geology tools.
      Axiom Space will continue to test the lunar spacesuit in facilities such as NASA’s Neutral Buoyancy Laboratory, one of the world’s largest indoor pools that can simulate a partial gravity environment, as the company works to finalize the spacesuit’s design. These tests are integral to ensuring the spacesuit is effective and complies with NASA’s safety and performance requirements. 
      Through Artemis, NASA will land the first woman, the first person of color, and its first international partner astronaut on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone to send the first astronauts to Mars. 
      An Axiom Space engineer uses a hammer and chisel to chip off simulated lunar rocks while wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit during testing at NASA’s Johnson Space Center.Axiom Space An Axiom Space engineer uses tongs to pick up a simulated lunar rock while wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit during testing at NASA’s Johnson Space Center.Axiom SpaceView the full article
  • Check out these Videos

×
×
  • Create New...