Jump to content

Exoplanets: Weird, Wondrous Worlds


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home Astro Campers SCoPE Out New… Astrophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      Astro Campers SCoPE Out New Worlds
      Teachers at Smokey Mountain Elementary School have collaborated with the NASA Science Activation (SciAct) program’s Smoky Mountains STEM (Science, Technology, Engineering, and Mathematics) Collaborative (SMSC) and project coordinator, Randi Neff, to create a summer camp for students who are passionate about STEM topics. What started as a small summer camp has since evolved into Astro Camp, a two-week community program from the NASA Astro Camp Community Partners (part of the NASA SciAct program infrastructure) with many engaging student activities.
      Many students have enjoyed this camp from the beginning, and those who have participated annually have become increasingly interested in more challenging and robust activities to continue their learning adventures. With the help of SciAct’s NASA SCoPE (the NASA Science Mission Directorate Community of Practice for Education) team, Neff was able to connect teachers with a NASA Subject Matter Expert, Dr. Alissa Bans, to help draft new, challenging activities for the students who were ready to take them on in June 2024. Of course, new attendees and learners continued to excitedly engage in the foundational Astro Camp activities, as appropriate for their learning levels.
      Thanks to Dr. Bans and the ongoing collaboration of these three SciAct teams, returning campers took on new challenges identifying and observing goldilocks exoplanets and zones (habitable planets outside our solar system and zones where conditions might be just right – neither too hot nor too cold – for life) and exploring the various conditions that might support life on a planet. Having the opportunity to seek out and tackle more advanced STEM topics, learners developed critical thinking skills and found satisfaction in expanding their science identities.
      The Smoky Mountains STEM Collaborative, NASA SCoPE, and NASA Astro Camp Community Partners projects are supported by NASA as part of the Science Activation program portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Dr. Alissa Bans, a NASA Subject Matter Expert with NASA SCoPE, leads an activity with a group of students during Astro Camp. Share








      Details
      Last Updated Aug 09, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Community Partners Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      2 min read Hubble Spotlights a Supernova


      Article


      3 hours ago
      2 min read Celebrate Heliophysics Big Year: Free Monthly Webinars on the Sun Touches Everything


      Article


      3 days ago
      6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      This graphic shows a three-dimensional map of stars near the Sun. The blue haloes represent stars observed with NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. Astronomers are using these X-ray data to determine how habitable exoplanets may be based on whether they receive lethal radiation from the stars they orbit. This research will help guide observations with the next generation of telescopes aiming to make the first images of planets like Earth. Researchers used almost 10 days of Chandra observations and 26 days of XMM observations to examine the X-ray behavior of 57 nearby stars, some of them with known planets. Results were presented at the 244th meeting of the American Astronomical Society meeting in Madison, Wisconsin, by Breanna Binder (California State Polytechnic University in Pomona). To view the full article, visit: https://chandra.harvard.edu/photo/2024/exoplanets/.
      View the full article
    • By NASA
      4 min read
      Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed!
      NASA’s Exoplanet Archive confirmed four new worlds, bringing the total past 5,500. On Aug. 24, 2023, more than three decades after the first confirmation of planets beyond our own solar system, scientists announced the discovery of six new exoplanets, stretching that number to 5,502. From zero exoplanet confirmations to over 5,500 in just a few decades, this new milestone marks another major step in the journey to understand the worlds beyond our solar system.
      The Discovery
      With the discovery of six new exoplanets, scientists have tipped the scales and surpassed 5,500 exoplanets found (there are now 5,502 known exoplanets, to be exact).
      Just about 31 years ago, in 1992, the first exoplanets were confirmed when scientists detected twin planets Poltergeist and Phobetor orbiting the pulsar PSR B1257+12. In March 2022, just last year, scientists celebrated passing 5,000 exoplanets discovered.
      Key Facts 
      Scientists have discovered six new exoplanets — HD 36384 b, TOI-198 b, TOI-2095 b, TOI-2095 c, TOI-4860 b, and MWC 758 c — this has pushed the total number of confirmed exoplanets discovered to 5,502.
      Details
      HD 36384 b is a super-Jupiter that orbits an enormous M giant star.
      This planet was discovered using the radial velocity method, which measures the “wobble” of far-off stars that is caused by the gravitational tug of orbiting planets. Orbits a star so large that it clocks in at nearly 40 times the size of our Sun. TOI-198 b is a potentially rocky planet that orbits on the innermost edge of the habitable zone around its star, an M dwarf.
      This planet was discovered using the transit method, which detects exoplanets as they cross the face of their stars in their orbit, causing the star to temporarily dim. TOI-2095 b and TOI-2095 c are both large, hot super-Earths that orbit in the same system around a shared star, an M dwarf.
      Planets were both discovered using the transit method. Are close enough to their star that they are likely more similar to Venus than Earth. TOI-4860 b is a Jupiter-sized gas giant, or a “hot Jupiter,” that orbits an M dwarf star.
      This planet was discovered using the transit method. Completes an orbit every 1.52 days, meaning it is very close to its star. While it is extremely rare for giant planets like this to orbit so closely to Sun-like stars, it is even rarer for them to orbit M-dwarf stars as is the case here. MWC 758 c is a giant protoplanet that orbits a very young star. This star still has its protoplanetary disk, which is a rotating disc of gas and dust that can surround a young star.
      This planet was discovered using direct imaging. Was found carving spiral arms into its star’s protoplanetary disk. Is one of the first exoplanets discovered in a system where the star has a protoplanetary disk. The field of exoplanet science has exploded since the first exoplanet confirmation in 1992, and with evolving technology, the future for this field looks brighter than ever.
      In March 2022, NASA passed 5,000 confirmed exoplanets. Tis data sonification allows us to hear the pace of the discovery of those worlds. In this animation, exoplanets are represented by musical notes played across decades of discovery. Circles show location and size of orbit, while their color indicates the detection method. Lower notes mean longer orbits, higher notes mean shorter orbits. Credit: NASA/JPL-Caltech/M. Russo, A. Santaguida (SYSTEM Sounds) Watch this video in 3D There are a number of both space and ground-based instruments and observatories that scientists have used to detect and study exoplanets.
      NASA’s Transiting Exoplanet Survey Satellite (TESS) launched in 2018 and has identified thousands of exoplanet candidates and confirmed over 320 planets.
      NASA’s flagship space telescopes Spitzer, Hubble, and most recently the James Webb Space Telescope have also been used to discover and study exoplanets.
      NASA’s Nancy Grace Roman Space Telescope is set to launch in May 2027. Roman will be carrying a technology demonstration called the Roman Coronagraph Instrument. This coronagraph will work by using a series of complex masks and mirrors to distort the light coming from far-away stars. By distorting this starlight, the instrument will reveal and directly-image hidden exoplanets.
      With the success of the Roman Coronagraph Instrument, NASA could push the envelope even further with is a concept for the mission the Habitable Worlds Observatory, which would search for “signatures of life on planets outside of our solar system,” according to the 2020 Decadal Survey on Astronomy and Astrophysics.
      The Discoverers 
      These six exoplanets were discovered by different teams as part of five separate studies:
      TOI-4860 b TOI-2095 b & c HD 36384 b TOI-198 b MWC 758 c Share








      Details
      Last Updated Jul 16, 2024 Related Terms
      Exoplanet Discoveries Exoplanet Exploration Program Exoplanets Gas Giant Exoplanets Studying Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets Explore More
      6 min read NASA’s Webb Investigates Eternal Sunrises, Sunsets on Distant World


      Article


      2 days ago
      5 min read Webb Finds Plethora of Carbon Molecules Around Young Star


      Article


      1 month ago
      4 min read Discovery Alert: Spock’s Home Planet Goes ‘Poof’


      Article


      2 months ago
      Keep Exploring Discover More Topics From NASA
      Exoplanets



      Universe



      Roman



      Exoplanet Catalog


      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Movie: Cal Poly Pomona/B. Binder; Illustration: NASA/CXC/M.Weiss This graphic shows a three-dimensional map of stars near the Sun. These stars are close enough that they could be prime targets for direct imaging searches for planets using future telescopes. The blue haloes represent stars that have been observed with NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. The yellow star at the center of this diagram represents the position of the Sun. The concentric rings show distances of 5, 10, and 15 parsecs (one parsec is equivalent to roughly 3.2 light-years).
      Astronomers are using these X-ray data to determine how habitable exoplanets may be based on whether they receive lethal radiation from the stars they orbit, as described in our latest press release. This type of research will help guide observations with the next generation of telescopes aiming to make the first images of planets like Earth.
      Researchers examined stars that are close enough to Earth that telescopes set to begin operating in the next decade or two — including the Habitable Worlds Observatory in space and Extremely Large Telescopes on the ground — could take images of planets in the stars’ so-called habitable zones. This term defines orbits where the planets could have liquid water on their surfaces.
      There are several factors influencing what could make a planet suitable for life as we know it. One of those factors is the amount of harmful X-rays and ultraviolet light they receive, which can damage or even strip away the planet’s atmosphere.
      Based on X-ray observations of some of these stars using data from Chandra and XMM-Newton, the research team examined which stars could have hospitable conditions on orbiting planets for life to form and prosper. They studied how bright the stars are in X-rays, how energetic the X-rays are, and how much and how quickly they change in X-ray output, for example, due to flares. Brighter and more energetic X-rays can cause more damage to the atmospheres of orbiting planets.
      The researchers used almost 10 days of Chandra observations and about 26 days of XMM observations, available in archives, to examine the X-ray behavior of 57 nearby stars, some of them with known planets. Most of these are giant planets like Jupiter, Saturn or Neptune, while only a handful of planets or planet candidates could be less than about twice as massive as Earth.
      These results were presented at the 244th meeting of the American Astronomical Society meeting in Madison, Wisconsin, by Breanna Binder (California State Polytechnic University in Pomona).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge, Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description:
      This video shows a three-dimensional map of stars near the Sun on the left side of our screen and a dramatic illustration of a star with a planet orbiting around it on the right side.
      The star map on the left shows many circular dots of different colors floating within an illustrated three-sided box. Each wall of the box is constructed in a grid pattern, with straight lines running horizontally and vertically like chicken wire. Dots that are colored blue represent stars that have been observed with NASA’s Chandra and ESA’s XMM-Newton.
      Suspended in the box, at about the halfway point, is a series of three concentric circles surrounding a central dot that indicates the placement of our Sun. The circles represent distances of 5, 10, and 15 parsecs. One parsec is equivalent to roughly 3.2 light-years.
      In the animation, the dot filled, chicken wire box spins around slowly, first on its X axis and then on its Y axis, providing a three-dimensional exploration of the plotted stars.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      Edit
      View the full article
    • By NASA
      4 min read
      Solid State Quantum Magnetometers—Seeking out water worlds from the quantum world
      Left: Jupiter’s moon Europa and its presumed interior. A thick ice shell covers a planetary saltwater ocean, presumed to hold twice as much water as Earth’s oceans. Right: Simulation of the ocean bending the magnetic field lines emitted by Jupiter that are close to Europa Image credit: C. Cochrane/ NASA/JPL-Caltech “Follow the water!”  The solar system is full of water in different states, from the Sun’s water vapor to the ice of Pluto and beyond. Water is not only linked to the possibility to sustain life, it is also interesting for its own geological properties and potential uses. For example, ice on the Moon and Mars could support human exploration. Comets that hit Earth may have deposited water on our planet. The icy comets and rings of Saturn reveal how solar systems change over time.
      Liquid water, however, has a special role in enabling life. Scientists have discovered indications that liquid water might exist on a number of moons orbiting our solar system’s gas and ice giants. The mantra of the astrobiology community is to “Follow the Water” to find life, so subsurface oceans on Jupiter’s Europa, Saturn’s Enceladus, and other moons are compelling targets for future missions.
      However, looking beneath the miles-thick ice crusts of these planetary bodies with conventional remote-sensing instruments, like cameras and radar, is challenging. Until we can send landers or rovers that drill or melt through the ice, we can use other techniques to track down these enormous, but elusive, water bodies. One method—Magnetometry—stands out since magnetic fields penetrate solid material and can therefore provide information about the interior of planet-sized bodies.
      Briny water conducts electricity; therefore, a saltwater ocean can function as a planet-sized electric circuit. The strong rotating magnetic field of the parent planet of an ocean world can induce an electric current in this “circuit,” which in turn disturbs and modifies the magnetic field near the ocean world under investigation. These magnetic field disturbances can be observed from a spacecraft and may indicate the presence of liquid water. For example, a distortion of Jupiter’s magnetic field in the vicinity of Europa was measured by the magnetometer on NASA’s Galileo mission, providing further evidence for the initial suspicions of a water ocean under that moon’s icy crust.
      The heart of optically pumped quantum magnetometers: a diamond crystal enriched with color centers. Unlike many other quantum systems, diamond and SiC solid state quantum color centers operate at room temperature and can be readily accessed electrically or optically. The bottom photo, filtering the laser light for the observer, shows the red-shifted emission response of the quantum system. This response is encoded with quantum spin information, and can be used to read environmental influences, such as temperature, pressure, electric and, most importantly for us, magnetic field properties. Image credit A. Gottscholl/ NASA/JPL-Caltech Solid-state quantum magnetometers are an upcoming instrument class promising to measure magnetic fields at competitive sensitivities, while offering lower size, weight, and power footprints. In addition, these instruments offer quantum benefits like self-calibration on spin-nuclear quantum interaction, which means that the magnetometer can compensate for drifts over time. This capability is especially important for decades-long missions to the outer ice-giants. Other solid-state quantum advantages include radiation resilience and an inherent ability to withstand very high/low temperatures.
      Solid-state quantum magnetometers leverage quantum color centers located in semiconductors such as diamond and silicon carbide. Color centers are defects in the crystal lattice—for example, a missing atom or a different atom replacing a crystal atom. In everyday life, color centers give crystals their color, but they can also be probed on the quantum level using modulated light. Due to their quantum spin properties these color centers are sensitive to environmental magnetic fields. As these color centers are exposed to varying magnetic fields, the changing quantum spin properties can be read electrically and/or optically, providing insight into the magnetic field properties and enabling us to detect the presence of water.
      Research teams at NASA’s Jet Propulsion Laboratory are developing two magnetometers to measure spin properties from space. The incredibly simple but elegant SiCMAG (Silicon Carbide Magnetometer, Lead Dr. Corey J. Cochrane) instrument reads spin properties electrically, while the OPuS-MAGNM (optically pumped solid state quantum magnetometer, Lead Dr. Hannes Kraus) promises access to higher sensitivities through the addition of optics. Optically pumped here means that the quantum system is pumped with green (diamond) or deep red (silicon carbide) laser light, and the system’s response is read with a light detector.
      According to Dr. Kraus, “Novel quantum sensors not only enable new science, but also offer the chance to downscale former flagship-class instrumentation to a size and cost allowing flagship-class science on CubeSat-class platforms.”
      NASA has been funding solid state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia support this research, including NASA’s Glenn Research Center in Cleveland, the University of Iowa, Q-Cat LLC and QuantCAD LLC, as well as international partners such as Japan’s National Institutes for Quantum Science and Technology (QST Japan) and ETH Zurich, a public research university in Zurich, Switzerland.
      PI Dr. Kraus (left) and postdoctoral researcher Dr. Andreas Gottscholl (right) in the JPL Quantum Magnetometer lab, with the optically detected magnetic resonance (ODMR) spectrometer apparatus—a larger-scale stepping stone towards a miniaturized integrated magnetometer instrument—built by Dr. Gottscholl in the background. The optically pumped quantum sensor crystals (not visible here, as the sensor itself is only millimeters in size) are located in the concentric barrel-shaped four-layer µ-metal chamber, which is capable of shielding the Earth’s and other magnetic field disturbances by a factor of 100,000. Image Credit H. Kraus/ NASA/JPL-Caltech Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
      PROJECT LEAD
      Dr. Hannes Kraus, Dr. Corey Cochrane, Jet Propulsion Laboratory/California Institute of Technology
      SPONSORING ORGANIZATION
      Science Mission Directorate PICASSO, JPL R&D funding
      Share








      Details
      Last Updated Jun 04, 2024 Related Terms
      Planetary Science Science-enabling Technology Technology Highlights The Solar System Explore More
      2 min read June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III
      In the final Circumpolar Constellations installment, learn about objects in Cepheus, Draco, and Ursa Major,…


      Article


      4 days ago
      6 min read What’s Up: June 2024 Skywatching Tips from NASA


      Article


      5 days ago
      8 min read The Moon and Amaey Shah


      Article


      5 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...