Jump to content

Recommended Posts

Posted
Vega-C_power_and_versatility_card_full.j Video: 00:05:04

Europe’s new launch vehicle, Vega-C, is near completion. Elements will soon be shipped to Kourou for assembly and preparation for Vega-C’s inaugural flight.

This new launcher improves its Vega predecessor by offering more power and versatility at similar cost. This new design allows Vega-C to transport larger and heavier payloads into space making it a world-class competitor on the global launcher market while ensuring Europe’s independent access to space.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Launched just two months ago and still in the process of being commissioned for service, the Copernicus Sentinel-1C satellite is, remarkably, already showing how its radar data can be used to map the shape of Earth’s land surface with extreme precision.
      These first cross-satellite ‘interferometry’ results assure its ability to monitor subsidence, uplift, glacier flow, and disasters such as landslides and earthquakes.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
      “We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
      The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
      Credit: NASA/Lillianne Hammel  A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
      The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
      Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
      Explore More
      3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 6 days ago 9 min read Combustor Facilities
      Article 1 week ago

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Beholding Black Hole Power with the Accretion Explorer Interferometer concept.NASA/Kimberly Weaver Kimberly Weaver
      NASA Goddard Space Flight Center
      Some of the most enigmatic objects in the Universe are giant supermassive black holes (SMBH). Yet after 30 years of study, we don’t know precisely how these objects produce their power. This requires observations at X-ray wavelengths. The state-of-the-art for X-ray images is Chandra (~0.5-1 arcsecond resolution) but this is insufficient to image regions near SMBH where the most energetic behavior occurs. The Accretion Explorer (AE) is a mission architecture that will shatter new ground by creating X-ray images at scientifically crucial energies of 0.7-1.2 keV, 1.5-2.5 keV, 6-7 keV, up to 6 orders of magnitude better than Chandra, and will offer imaging at 4-5 orders of magnitude better than JWST (IR) and HST(optical/UV). The specific X-ray energy bands we are proposing to cover contain vital X-ray line signatures that can distinguish between SMBH activity and stellar processes. The AE NIAC concept would be a game changer for NASA and astrophysics. X-ray interferometry will challenge and change the conversation around future mission possibilities for NASA’s flagships. It will also influence the Astrophysics 2030 Decadal Survey and will significantly contribute to our scientific knowledge base in astrophysics and other fields. AE has tremendous potential to generate enthusiasm for future missions and the potential to build advocacy to support it within NASA, society, and the aerospace community.
      Alternative approaches to ultra high-resolution X-ray imaging technology are not currently being funded. Our study will focus on a large free-flying X-ray interferometer. We will design a multiple spacecraft system that provides the architecture to align individual mirror pair baseline groupings provided by individual collector spacecraft, with the pointing precision to achieve micro-arcsecond resolution. Our study will assess the required pointing stability and determine optimal ways to nest and mount the collecting mirror flats within mirror modules. We will assess the required size for the detector array(s) to accommodate the wavelength coverage for detecting fringes, study how images will be created from fringes, and produce a simulated image from a design with accompanying optical element tolerance tables. We will document alternative approaches, how new factors substantially differentiate AE from prior efforts for X-ray interferometry, and identify technical hurdles.
      As a result of performing this study, there are notable engineering benefits that can contribute to space missions, even if the concept is shown to be infeasible. These include establishing how small baseline interferometers can be flown with less risk in terms of spacing and tethering mirror modules, studies of very high levels of pointing precision for space-based interferometers, and extreme stability on target. Producing a simulated image from this design with accompanying tolerance tables can inform other space-based interferometry designs.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NASA Innovative Advanced Concepts (NIAC) Program NIAC Studies Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Workers making way for NASA’s Stennis Space Center near Bay St. Louis, Mississippi, likely did not realize they were building something that would not only withstand the test of time but transcend it.
      Mosquitoes, snakes, hurricanes, and intense south Mississippi heat – early crews faced all with a spirit of resilience and adaptability that remains a hallmark characteristic of NASA Stennis six decades later.
      “From going to the Moon for the first time and now returning to the Moon, you can trace a straight line of propulsion testing at NASA Stennis,” said Maury Vander, chief of the NASA Stennis Test Operations Division. “We still stand on the front lines of support for this country’s space program.”
      For five decades and counting, the versatile NASA Stennis test stands have been used for stage, engine, and component testing on multiple NASA and commercial projects.
      A Sept. 25, 2012, aerial image shows the three propulsion test areas at NASA’s Stennis Space Center – the E Test Complex (with 12 active test cell positions capable of component, engine, and stage test activities) in the foreground, the A Test Complex (featuring the Fred Haise, A-2, and A-3 stands for large engine testing) in the middle, and the Thad Cochran Test Stand (B-1/B-2) that can support both engine and stage testing in the background.NASA/Stennis The Fred Haise Test Stand (formerly the A-1 Test Stand), pictured on Oct. 6, 2020, at NASA’s Stennis Space Center, tests RS-25 flight engines to help power NASA’s powerful SLS (Space Launch System). NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-2 Test Stand at NASA’s Stennis Space Center – then-Mississippi Test Facility – on April 17, 1966. Less than a week later, south Mississippi would be fully ushered into the Apollo era with the site’s first-ever hot fire test. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-3 Test Stand at NASA’s Stennis Space Center on March 29, 2013. The test stand area now is under lease to Rocket Lab for commercial operations. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Dec. 31, 2014, during buildout for testing the core stage of NASA’s SLS (Space Launch System) rocket. NASA/Stennis An aerial image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Feb. 22, 2017, following core stage buildout of the test stand for future SLS (Space Launch System) testing. NASA/Stennis Three NASA Stennis stands – Fred Haise (formerly the A-1 Test Stand), A-2, and Thad Cochran (B-1/B-2) – date to the 1960s, when they were built to test Saturn V rocket stages for Apollo missions to the Moon. The Fred Haise and A-2 stand were single-position stands for testing one Saturn V second stage at a time. The Thad Cochran featured two positions – (B-1 and B-2) – that could each house a Saturn V first stage, although only the B-2 position was used during Apollo testing.
      When the Apollo Program ended, the Fred Haise, A-2, and Thad Cochran (B-1) stands were modified to test single engines rather than rocket stages. All three were used in subsequent years to test space shuttle main engines and others.
      Meanwhile, the Thad Cochran (B-2) stand was maintained for full stage testing. The space shuttle Main Propulsion Test Article was tested on the stand, as was the Common Core Booster for the Delta IV rocket. Most recently, the stand was used to test the first SLS (Space Launch System) stage that helped launch the Artemis I mission in 2022.
      In 2024, the Fred Haise Test Stand is dedicated to RS-25 engine testing for NASA’s Artemis initiative. Every RS-25 engine that will help launch an SLS rocket during Artemis will be tested on the stand. The A-2 stand has been leased to Relativity Space, which is modifying it to support stage testing for its new rocket. In 2023, the Thad Cochran (B-1) stand concluded more than 20 years of RS-68 testing for Aerojet Rocketdyne (now known as L3Harris) and now is open for commercial use. The Thad Cochran (B-2) stand is being prepared to test NASA’s new SLS exploration upper stage before it flies on a future Artemis mission.
      “When you think about the work at NASA Stennis, this is a place that helps write history,” Vander said. “And in a sense, these test stands are timeless, still operating as designed 60 years after they were built, so there is more history yet to come.”
      NASA Stennis also constructed a fourth large test structure in the 2010s. The A-3 Test Stand is uniquely designed to simulate high altitudes up to 100,000 feet for testing engines and stages that need to fire in space. Rocket Lab currently leases the A-3 Test Stand area for construction of its Archimedes Test Complex.
      Crews deliver the first RS-25 flight engine, engine No. 2059, to the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Nov. 4, 2015. The engine was tested to certify it for use on NASA’s powerful SLS (Space Launch System) rocket. NASA/Stennis An image shows a space shuttle main engine test on the A-2 Test Stand at NASA’s Stennis Space Center on July 21, 2003. NASA/Stennis The A-3 Test Stand, designed to test fire next-generation engines at simulated altitudes up to 100,000 feet, undergoes an activation test on Feb. 24, 2014.NASA/Stennis NASA Stennis also operates a smaller test area to conduct component, subsystem, and system level testing. The area is now known as the E Test Complex and features four facilities, all developed from the late 1980s to the early 1990s.
      Construction of the E-1 Test Stand, then known as the Component Test Facility, began to support a joint project involving NASA and the U.S. Air Force project. Although the project was canceled, a second joint endeavor allowed completion of the test facility.
      Development of the E-2 Test Stand, originally known as the High Heat Flux Facility, began to support the National Aerospace Plane project. Following cancelation of the project, the facility was completed to support testing for component and engine development efforts.
      An E-3 Test Facility was constructed to support various component and small/subscale engine and booster test projects. Relativity Space leased a partially developed E-4 test area in 2018 and has since completed construction to support its commercial testing.
      All in all, the E Test Complex stands feature 12 active cells capable of various component and engine testing. The versatility of the complex infrastructure and test team allows it to support test projects for a range of commercial aerospace companies, large and small. Currently, both E-2 cells 1 and 2 are leased to Relativity Space through 2028.
      An aerial image shows the E-1 Test Stand at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-3 test area at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-2 Test Stand (Cell 1) at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis “These facilities really do not exist anywhere else in the United States,” said Kevin Power, assistant director, Office of Project Management in the NASA Stennis Engineering and Test Directorate.  “Customers come to us with requirements for certain tests of an article, and we look at what is the best place to test it based on the facility infrastructure. We have completed component level testing, all the way up to full engines.”
      The list of companies who have conducted – or are now conducting – propulsion projects in the E Test Complex reads like a who’s who of commercial aerospace leaders.
      “The E Complex illustrates the NASA Stennis story,” Power said. “We have very valuable infrastructure and resources, chief of which is the test team, who adapt to benefit NASA and meet the needs of the growing commercial aerospace industry.”
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By European Space Agency
      A new European Space Agency-backed study shows that the extreme heatwaves of 2023, which fuelled huge wildfires and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change.
      View the full article
  • Check out these Videos

×
×
  • Create New...