Jump to content

Recommended Posts

Posted
Dodging_debris_to_keep_satellites_safe_c Video: 00:01:31

Our planet is surrounded by spacecraft helping us study our changing climate, save lives following disasters, deliver global communication and navigation services and help us answer important scientific questions.

But these satellites are at risk. Accidental collisions between objects in space can produce huge clouds of fast-moving debris that can spread and damage additional satellites with cascading effect.

In this animation, find out how teams at ESA’s European Space Operations Centre in Darmstadt, Germany, take action to keep satellites safe after receiving an alert warning of a possible collision between an active satellite and a piece of space debris.

When the alert is raised, ESA experts determine the risk of a collision and plan a collision avoidance manoeuvre that can be used to get the satellite out of harm’s way if necessary.

Additional observations of the piece of space debris help the team better understand its path and the risk of collision. If that risk remains too high (typically 1 in 10 000), the planned manoeuvre is carried out to temporarily change the orbit of the satellite until the threat has passed.

Each manoeuvre comes at a price. They take skill and time to plan, cost precious fuel – shortening the lifetime of the mission – and often require instruments to be temporarily shut off, preventing them from collecting important data.

While most alerts do not end up requiring evasive action, the number of alerts is rapidly increasing. Hundreds are already issued every week. Several companies have begun to launch large constellations into low-Earth orbit to provide global internet access. They have great benefits, but could be a source of huge disruption if we do not change our behaviour.

In just a few years, our current methods for avoiding collisions in space will no longer be enough. To safeguard humankind’s continued access to space for future generations, ESA is developing technologies for an automated collision avoidance system.

Find out more about ESA’s Space Debris and Clean Space Offices, both part of the Space Safety Programme, and the Agency’s conference on space debris - the world’s largest on the topic - taking place in April 2021.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A multi-orbit constellation of about 300 satellites that will deliver resilient, secure and fast communications for EU governments, European companies and citizens will be put in orbit after two contracts were confirmed today in Brussels.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.
      The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.
      Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.
      “We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”
      A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.
      Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.
      “Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.
      Where Physics and Biology Meet
      The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.
      Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.
      The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.
      The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.
      Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      More About PACE
      The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2  was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration  was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.
      To learn more about PACE, visit:
      https://pace.gsfc.nasa.gov
      News Media Contacts
      Jacob Richmond (for PACE)
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      jacob.a.richmond@nasa.gov
      Jane J. Lee / Andrew Wang (for SWOT)
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-169
      Share
      Details
      Last Updated Dec 09, 2024 Related Terms
      PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Climate Science Oceans SWOT (Surface Water and Ocean Topography) Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 3 weeks ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
      Article 4 weeks ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Researchers from the University of Leeds have detected methane leaking from a faulty pipe in Cheltenham, Gloucestershire, UK, using GHGSat satellite data – part of ESA’s Third Party Mission Programme. This marks the first time a UK methane emission has been identified from space and successfully mitigated.
      View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As the program manager for people, culture and equity, “people whisperer” Edward Victor Gonzales helps ensure people’s wellbeing, comfort, and safety.
      Name: Edward Victor Gonzales
      Title: Program Manager for People, Culture, and Equity
      Organization: Heliophysics Division, Science and Exploration Directorate (Code 670)
      Eddie Gonzales is the program manager for People, Culture, and Equity for the Heliophysics Division at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA What do you do and what is most interesting about your role here at Goddard?
      As the program manager for people, culture, and equity officer for heliophysics, I am responsible for people’s wellbeing, comfort, and safety. What is most interesting to me is the vast diversity across Goddard.
      How did you come to Goddard?
      I went to college late in life, but never graduated. After high school, I started at Mount San Antonio Community College in Walnut, California, but had to work full time when my then-girlfriend became pregnant. I started in the mail room of an international law firm, gradually working my way into director of the support staff. I worked there for 15 years, often staying overnight. I could not attend night school and there were no online learning options at the time.
      In 2001, Warren Christopher, who was the managing partner at the law firm and later became secretary of state in the Clinton administration, wrote me a recommendation that helped me get a job at NASA’s Jet Propulsion Laboratory in Southern California as a business administrator. Apollo 13 inspired me to want to work for NASA. After obtaining the job at NASA JPL, I took a few classes at Pasadena Community College.
      In 2009, I was detailed to NASA Headquarters to work in the Office of STEM Education. After two years, I returned to JPL to work on minority-serving programs.
      In 2014, I returned to Headquarters for a fellowship to work in the Minority University Research Educational Programs. After a year and a half, I returned to JPL to manage underserved, underrepresented undergraduate programs.
      In 2018, I came to Goddard to do outreach for NASA Goddard’s heliophysics division. Three years later, I became the diversity, equity, inclusion, and accessibility officer for heliophysics and now, my current role as people, culture, and equity officer.
      As the people, culture, and equity officer, what are your responsibilities?
      First, I observe. There are a lot of cues and things that happen in the world that others, including leadership, can sometimes miss. We need to be conscious of these things. We need to be respectful and kind — always.
      When something happens in the world that impacts a colleague, I make sure to check in with them daily. On a broader scale, when something happens in the world that affects a particular culture, I check in with that particular group.
      I also go to underserved, underrepresented national conferences across the country. At the American Indian Science and Engineering Society conference, I talked about employment opportunities at NASA. It was important for those students to see someone who looked like them. I am half Native American and half Latinx [a gender-neutral term for those with Latin American heritage].
      “I was labeled a troublemaker. Teachers wouldn’t help me. My career counselor said I would do amazing work at a car wash and that’s what I should consider doing and not to continue my education. But I didn’t listen.” — Edward Gonzales, Diversity, Equity, Inclusion, and Accessibility Lead, Goddard Space Flight CenterNASA/Taylor Mickal In August 2024, the NASA administrator appointed you to the NASA Advisory Council. What do your duties there entail?
      The council has five committees: aeronautics, human exploration, science, STEM, and technology. I am a member of the science committee. My plan is to discuss the cultural role we all play at NASA.
      What skills do you use in speaking with underserved, underrepresented communities?
      I test the waters and the temperature of leadership. I am very active with the employees. I have an open-door policy.
      In addition, I think I am highly culturally aware overall. At conferences, I try to dress, speak, and act approachably for the students who attend.
      Most importantly, my cell phone is never to be seen. When interacting with someone, I am very observant of the other person’s body language overall, which helps me understand the other person better. Sometimes body language rather than words will tell you what you need to hear. My wife calls me a “people whisperer.”
      What does cultural awareness mean to you?
      Know your audience. I do not think about how I do things: I focus on how the next generation will do things. I try to speak their language. And listen, very important to listen.
      Typically, when I go to a national conference, students will approach me with a résumé. But at a Native American national conference, the elders may approach me with a student and a résumé. It is important to address the elder first and ask permission to speak to the student. Also, you would say that the student could bring knowledge learned at Goddard back to their reservation instead of saying that the student could leave their reservation. I also always acknowledge the tribe associated with where I am speaking.
      Whenever we send a team to a national conference, we send people who are culturally aware of that particular group’s culture.
      I also conduct cultural awareness training at Goddard.
      What are your hopes for Godard’s DEIA programs?
      I want to continue to create a pipeline of future employees that is more diverse, filled with great ideas and solutions, with a safe and welcoming environment for them.
      What advice do you give students?
      The path to NASA is not linear. You have to find your path.
      Eddie Gonzales looks out for colleagues wellbeing, comfort, and safety within NASA Goddard’s diverse workforce. Courtesy of Eddie Gonzales You’ve mentioned that DEIA is essentially about kindness. How do you define kindness? How do you teach it?
      Kindness in my humble opinion is about grace, integrity and understanding. And the willingness to learn about others and their cultures. To agree to disagree and have a polite conversation, to create that understanding.
      Teaching starts in the home, bad behavior, lack of understanding and racism are taught traits. We must do better and lead by example. To treat others how we want to be treated.
      Who are your mentors?
      One is Christopher Gardner, whose life was portrayed in “The Pursuit of Happyness.” I recently brought Christopher Gardner to Goddard to do a keynote speech and he even stayed with me. I met him because I saw his movie, read his book, and contacted him.
      I teach this lesson to students: Everyone is interested when you take the time to learn what is important to them. If there is someone you want to meet, network to try to meet them. All you have to do is ask. But first, research them so that you can talk to them about themselves and their work. If they say no, then you can move on to the next person.
      Gardner told me to focus on my plan A because plan B is not good. If you know that you have a plan B, then you won’t put everything you have into plan A. Tread forward as if there is nothing that you can fall back on.
      Another mentor is José Hernández, the first Hispanic astronaut. I proposed to my wife while staying at his condo. He told me to find my “yes” and to never give up. He applied to the astronaut program 13 times before he was finally selected.
      What are the next big things on your bucket list?
      I want to see the Northern Lights and continue to travel. I just lost 70 pounds and want to lose 20 more. I gave up meat for about six months and now eat chicken and turkey, but no longer eat red meat. I also exercise and now feel great.
      I want to continue to attend concerts around the country. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Dec 03, 2024 Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      6 min read Alfonso Delgado Bonal Has His Head in the Clouds — for Research
      Article 7 days ago 5 min read NASA Data Reveals Role of Green Spaces in Cooling Cities
      As any urban dweller who has lived through a heat wave knows, a shady tree…
      Article 1 week ago 3 min read Emerging Engineering Leader Basil Baldauff Emphasizes Osage Values
      Article 1 week ago View the full article
    • By NASA
      4 min read
      NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers GRACE satellites measure gravity as they orbit the planet to reveal shifting levels of water on the Earth (artist’s concept). NASA/JPL-Caltech An international team of scientists using observations from NASA-German satellites found evidence that Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low ever since. Reporting in Surveys in Geophysics, the researchers suggested the shift could indicate Earth’s continents have entered a persistently drier phase.
      From 2015 through 2023, satellite measurements showed that the average amount of freshwater stored on land — that includes liquid surface water like lakes and rivers, plus water in aquifers underground — was 290 cubic miles (1,200 cubic km) lower than the average levels from 2002 through 2014, said Matthew Rodell, one of the study authors and a hydrologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s two and a half times the volume of Lake Erie lost.”
      During times of drought, along with the modern expansion of irrigated agriculture, farms and cities must rely more heavily on groundwater, which can lead to a cycle of declining underground water supplies: freshwater supplies become depleted, rain and snow fail to replenish them, and more groundwater is pumped. The reduction in available water puts a strain on farmers and communities, potentially leading to famine, conflicts, poverty, and an increased risk of disease when people turn to contaminated water sources, according to a UN report on water stress published in 2024.
      The team of researchers identified this abrupt, global decrease in freshwater using observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, operated by the German Aerospace Center, German Research Centre for Geosciences, and NASA. GRACE satellites measure fluctuations in Earth’s gravity on monthly scales that reveal changes in the mass of water on and under the ground. The original GRACE satellites flew from March 2002 to October 2017. The successor GRACE–Follow On (GRACE–FO) satellites  launched in May 2018.
      This map shows the years that terrestrial water storage hit a 22-year minimum (i.e., the land was driest) at each location, based on data from the GRACE and GRACE/FO satellites. A significantly large portion of the global land surface reached this minimum in the nine years since 2015, which happen to be the nine warmest years in the modern temperature record. Image by NASA Earth Observatory/Wanmei Liang with data courtesy of Mary Michael O’Neill The decline in global freshwater reported in the study began with a massive drought in northern and central Brazil, and was followed shortly by a series of major droughts in Australasia, South America, North America, Europe, and Africa. Warmer ocean temperatures in the tropical Pacific from late 2014 into 2016, culminating in one of the most significant El Niño events since 1950, led to shifts in atmospheric jet streams that altered weather and rainfall patterns around the world. However, even after El Niño subsided, global freshwater failed to rebound.  In fact, Rodell and team report that 13 of the world’s 30 most intense droughts observed by GRACE occurred since January 2015. Rodell and colleagues suspect that global warming might be contributing to the enduring freshwater depletion.
      Global warming leads the atmosphere to hold more water vapor, which results in more extreme precipitation, said NASA Goddard meteorologist Michael Bosilovich. While total annual rain and snowfall levels may not change dramatically, long periods between intense precipitation events allow the soil to dry and become more compact. That decreases the amount of water the ground can absorb when it does rain. 
      “The problem when you have extreme precipitation,” Bosilovich said, “is the water ends up running off,” instead of soaking in and replenishing groundwater stores. Globally, freshwater levels have stayed consistently low since the 2014-2016 El Niño, while more water remains trapped in the atmosphere as water vapor. “Warming temperatures increase both the evaporation of water from the surface to the atmosphere, and the water-holding capacity of the atmosphere, increasing the frequency and intensity of drought conditions,” he noted.
      While there are reasons to suspect that the abrupt drop in freshwater is largely due to global warming, it can be difficult to definitively link the two, said Susanna Werth, a hydrologist and remote sensing scientist at Virginia Tech, who was not affiliated with the study. “There are uncertainties in climate predictions,” Werth said. “Measurements and models always come with errors.”
      It remains to be seen whether global freshwater will rebound to pre-2015 values, hold steady, or resume its decline. Considering that the nine warmest years in the modern temperature record coincided with the abrupt freshwater decline, Rodell said, “We don’t think this is a coincidence, and it could be a harbinger of what’s to come.”
      By James R. Riordon
      NASA’s Earth Science News Team
      Share








      Details
      Last Updated Nov 15, 2024 Editor James Riordon Contact James Riordon james.r.riordon@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Earth Goddard Space Flight Center GRACE (Gravity Recovery And Climate Experiment) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Water on Earth Explore More
      4 min read NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss
      Record snowfall in recent years has not been enough to offset long-term drying conditions and…


      Article


      5 months ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      How Earth’s Surface and Interior are Connected to Freshwater Availability



      Explore Earth Science


      View the full article
  • Check out these Videos

×
×
  • Create New...