Members Can Post Anonymously On This Site
Video: How Galileo works, for its 2 billion global users
-
Similar Topics
-
By Space Force
In an era defined by rapid technology advancements and with a worldwide platform saturated with Great Power Competition, the Distributed Mission Operations Center on Kirtland Air Force Base, hosted its Virtual Flag: Coalition exercise, Oct. 21 - Nov. 4.
View the full article
-
By NASA
4 min read
NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers GRACE satellites measure gravity as they orbit the planet to reveal shifting levels of water on the Earth (artist’s concept). NASA/JPL-Caltech An international team of scientists using observations from NASA-German satellites found evidence that Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low ever since. Reporting in Surveys in Geophysics, the researchers suggested the shift could indicate Earth’s continents have entered a persistently drier phase.
From 2015 through 2023, satellite measurements showed that the average amount of freshwater stored on land — that includes liquid surface water like lakes and rivers, plus water in aquifers underground — was 290 cubic miles (1,200 cubic km) lower than the average levels from 2002 through 2014, said Matthew Rodell, one of the study authors and a hydrologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s two and a half times the volume of Lake Erie lost.”
During times of drought, along with the modern expansion of irrigated agriculture, farms and cities must rely more heavily on groundwater, which can lead to a cycle of declining underground water supplies: freshwater supplies become depleted, rain and snow fail to replenish them, and more groundwater is pumped. The reduction in available water puts a strain on farmers and communities, potentially leading to famine, conflicts, poverty, and an increased risk of disease when people turn to contaminated water sources, according to a UN report on water stress published in 2024.
The team of researchers identified this abrupt, global decrease in freshwater using observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, operated by the German Aerospace Center, German Research Centre for Geosciences, and NASA. GRACE satellites measure fluctuations in Earth’s gravity on monthly scales that reveal changes in the mass of water on and under the ground. The original GRACE satellites flew from March 2002 to October 2017. The successor GRACE–Follow On (GRACE–FO) satellites launched in May 2018.
This map shows the years that terrestrial water storage hit a 22-year minimum (i.e., the land was driest) at each location, based on data from the GRACE and GRACE/FO satellites. A significantly large portion of the global land surface reached this minimum in the nine years since 2015, which happen to be the nine warmest years in the modern temperature record. Image by NASA Earth Observatory/Wanmei Liang with data courtesy of Mary Michael O’Neill The decline in global freshwater reported in the study began with a massive drought in northern and central Brazil, and was followed shortly by a series of major droughts in Australasia, South America, North America, Europe, and Africa. Warmer ocean temperatures in the tropical Pacific from late 2014 into 2016, culminating in one of the most significant El Niño events since 1950, led to shifts in atmospheric jet streams that altered weather and rainfall patterns around the world. However, even after El Niño subsided, global freshwater failed to rebound. In fact, Rodell and team report that 13 of the world’s 30 most intense droughts observed by GRACE occurred since January 2015. Rodell and colleagues suspect that global warming might be contributing to the enduring freshwater depletion.
Global warming leads the atmosphere to hold more water vapor, which results in more extreme precipitation, said NASA Goddard meteorologist Michael Bosilovich. While total annual rain and snowfall levels may not change dramatically, long periods between intense precipitation events allow the soil to dry and become more compact. That decreases the amount of water the ground can absorb when it does rain.
“The problem when you have extreme precipitation,” Bosilovich said, “is the water ends up running off,” instead of soaking in and replenishing groundwater stores. Globally, freshwater levels have stayed consistently low since the 2014-2016 El Niño, while more water remains trapped in the atmosphere as water vapor. “Warming temperatures increase both the evaporation of water from the surface to the atmosphere, and the water-holding capacity of the atmosphere, increasing the frequency and intensity of drought conditions,” he noted.
While there are reasons to suspect that the abrupt drop in freshwater is largely due to global warming, it can be difficult to definitively link the two, said Susanna Werth, a hydrologist and remote sensing scientist at Virginia Tech, who was not affiliated with the study. “There are uncertainties in climate predictions,” Werth said. “Measurements and models always come with errors.”
It remains to be seen whether global freshwater will rebound to pre-2015 values, hold steady, or resume its decline. Considering that the nine warmest years in the modern temperature record coincided with the abrupt freshwater decline, Rodell said, “We don’t think this is a coincidence, and it could be a harbinger of what’s to come.”
By James R. Riordon
NASA’s Earth Science News Team
Share
Details
Last Updated Nov 15, 2024 Editor James Riordon Contact James Riordon james.r.riordon@nasa.gov Location NASA Goddard Space Flight Center Related Terms
Earth Goddard Space Flight Center GRACE (Gravity Recovery And Climate Experiment) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Water on Earth Explore More
4 min read NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss
Record snowfall in recent years has not been enough to offset long-term drying conditions and…
Article
5 months ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
How Earth’s Surface and Interior are Connected to Freshwater Availability
Explore Earth Science
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.
These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.
Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”
The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.
The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.
Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.
The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.
NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”
After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
1 min read NASA Awards Contract for Refuse and Recycling Services
Article 5 days ago 5 min read We Are All Made of Cells: Space and the Immune System
Article 6 days ago 2 min read NASA Brings Drone and Space Rover to Air Show
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Quesst: The Vehicle
Explore NASA’s History
Share
Details
Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
-
By NASA
The SpaceX Dragon spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbits 259 miles above Oregon.Credit: NASA In preparation for the arrival of NASA’s SpaceX 31st commercial resupply services mission, four crew members aboard the International Space Station will relocate the agency’s SpaceX Crew-9 Dragon spacecraft to a different docking port Sunday, Nov. 3.
Live coverage begins at 6:15 a.m. EDT on NASA+ and will end shortly after docking. Learn how to watch NASA content through a variety of platforms, including social media.
NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, will undock the spacecraft from the forward-facing port of the station’s Harmony module at 6:35 a.m., and redock to the module’s space-facing port at 7:18 a.m.
The relocation, supported by flight controllers at NASA’s Johnson Space Center in Houston and the Mission Control team at SpaceX in Hawthorne, California, will free Harmony’s forward-facing port for a Dragon cargo spacecraft mission scheduled to launch no earlier than Monday, Nov. 4.
This will be the fifth port relocation of a Dragon spacecraft with crew aboard following previous moves during the Crew-1, Crew-2, Crew-6, and Crew-8 missions.
Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
NASA’s SpaceX Crew-9 mission launched Sept. 28 from NASA’s Kennedy Space Center in Florida and docked to the space station Sept. 29. Crew-9, targeted to return February 2025, is the company’s ninth rotational crew mission as a part of the agency’s Commercial Crew Program.
Find NASA’s commercial crew blog and more information about the Crew-9 mission at:
https://www.nasa.gov/commercialcrew
-end-
Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Oct 29, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Commercial Crew Humans in Space International Space Station (ISS) Johnson Space Center Kennedy Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.