Members Can Post Anonymously On This Site
As Artemis Moves Forward, NASA Picks SpaceX to Land Next Americans on Moon
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
“If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.
As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
“There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronauts Victor Glover and Christina Koch tour the Arc Jet Facility at NASA’s Ames Research Center, learning more about the testing equipment’s capabilities to analyze thermal protection systems from George Raiche, thermophysics facilities branch chief at Ames.NASA/Donald Richey As NASA prepares to send astronauts to the Moon aboard the Orion spacecraft, research, testing, and development at NASA’s Ames Research Center in California’s Silicon Valley has played a critical role.
Recently, Ames welcomed Artemis II astronauts Christina Koch and Victor Glover and Orion leaders Debbie Korth, deputy program manager, and Luis Saucedo, deputy crew and service module manager, to tour Ames facilities that support the Orion Program and celebrate the achievements of employees.
The group started their visit at the Arc Jet Complex, where researchers use extremely hot, high-speed gases to simulate the intense heat of atmospheric reentry before visiting the Sensors & Thermal Protection Systems Advanced Research Laboratories. The team works to develop sensors and flight instrumentation that measure heat shield response throughout a mission.
These systems were used to develop and test Orion’s thermal protection system to ensure the safety of astronauts during future missions. After the successful return of the Artemis I Orion spacecraft, Ames research was essential when analyzing unexpected charring loss on the heat shield.
Debbie Korth, Orion deputy program manager, presents awards to the Ames workforce at the Orion Circle of Excellence Awards Ceremony, while astronauts Christina Koch and Victor Glover look on.NASA/Donald Richey The visit culminated in an award ceremony to honor employees with outstanding performance and a legacy of service to the Orion Program. Thirty-two employees were honored for their individual or team contributions.
“The Ames workforce has played an important role in developing, testing, and validating the Orion spacecraft’s thermal protection system as well as supporting its software and guidance, navigation, and control,” said Eugene Tu, NASA Ames center director. “I’m pleased to see their contributions recognized and celebrated by program leadership and two of the astronauts whose safety and success were in mind when ensuring these systems are safe, reliable, and the highest quality possible.”
Share
Details
Last Updated Apr 02, 2025 Related Terms
Ames Research Center Artemis Christina H. Koch Exploration Systems Development Mission Directorate General Orion Program Victor J. Glover Explore More
2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
Article 1 hour ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
Article 1 day ago 4 min read NASA Trains for Orion Water Recovery Ahead of Artemis II Launch
Article 2 days ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Orion Spacecraft
Arc Jet Complex
Thermal Protection Materials Branch
View the full article
-
By NASA
The Roscosmos Soyuz MS-27 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Jonny Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.Credit: Gagarin Cosmonaut Training Center NASA astronaut Jonny Kim will launch aboard the Roscosmos Soyuz MS-27 spacecraft to the International Space Station, accompanied by cosmonauts Sergey Ryzhikov and Alexey Zubritsky, where they will join the Expedition 72/73 crew in advancing scientific research.
Kim, Ryzhikov, and Zubritsky will lift off at 1:47 a.m. EDT Tuesday, April 8 (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
Watch live launch and docking coverage on NASA+. Learn how to watch NASA content through a variety of platforms.
After a two-orbit, three-hour trajectory to the station, the spacecraft will dock automatically to the station’s Prichal module at approximately 5:03 a.m. Shortly after, hatches will open between Soyuz and the space station.
Once aboard, the trio will join NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Alexey Ovchinin, Kirill Peskov, and Ivan Vagner.
NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, April 8
12:45 a.m. – Launch coverage begins on NASA+.
1:47 a.m. – Launch
4:15 a.m. – Rendezvous and docking coverage begins on NASA+.
5:03 a.m. – Docking
7 a.m. – Hatch opening and welcome remarks coverage begins on NASA+.
7:20 a.m. – Hatch opening
The trio will spend approximately eight months aboard the orbital laboratory as Expedition 72 and 73 crew members before returning to Earth in December. This will be the first flight for Kim and Zubritsky, and the third for Ryzhikov.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.
Learn more about International Space Station research and operations at:
https://www.nasa.gov/station
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Apr 02, 2025 LocationNASA Headquarters Related Terms
International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The International Space Station is pictured from the SpaceX Dragon spacecraft by a Crew-8 member shortly after undocking from the Harmony module’s space-facing port as the orbital outpost was soaring 272 miles above the cloudy Patagonia region of South America.NASA NASA is seeking proposals for two new private astronaut missions to the International Space Station, targeted for 2026 and 2027, as the agency continues its commitment to expanding access to space. These private missions enable American commercial companies to further develop capabilities and support a continuous human presence in low Earth orbit.
“We are in an incredible time for human spaceflight, with more opportunities to access space and grow a thriving commercial economy in low Earth orbit,” said Dana Weigel, program manager for the International Space Station at NASA’s Johnson Space Center in Houston. “NASA remains committed to supporting this expansion by leveraging our decades of expertise to help industry gain the experience needed to train and manage crews, conduct research, and develop future destinations. Private astronaut missions are a key part of this effort, providing companies with hands-on opportunities to refine their capabilities and build partnerships that will shape the future of low Earth orbit.”
The new flight opportunities will be the fifth and sixth private astronaut missions to the orbiting laboratory coordinated by NASA. The first three missions were accomplished by Axiom Space in April 2022, May 2023, and January 2024, with a fourth scheduled for no earlier than May 2025.
Each of the new missions may be docked to the space station for up to 14 days. Specific dates depend on spacecraft traffic at the space station and in-orbit activity planning and constraints. Private astronaut missions must be brokered by a U.S. entity and use U.S. transportation spacecraft that meet NASA’s International Space Station visiting vehicle requirements, policies, and procedures. For additional details, refer to Focus Area 4A of NASA Research Announcement (NRA) NNJ13ZBG001N.
Proposals are due by 5 p.m. EDT on Friday, May 30, 2025.
For solicitation information, visit:
https://www.nasa.gov/johnson/jsc-procurement/pam
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
Learn more about the International Space Station at:
https://www.nasa.gov/station
Keep Exploring Discover More Topics
Low Earth Orbit Economy
Commercial Space
Commercial Crew Program
Humans In Space
View the full article
-
By NASA
NASA’s Stennis Space Center employees were recognized with Honoree Awards from NASA’s Space Flight Awareness Program during a March 10 ceremony in Orlando, Florida, for outstanding support of human spaceflight.
Stennis Space Center employee Melissa Wagner of Pass Christian, Mississippi, is presented with the NASA Space Flight Awareness Program Honoree Award during a March 10 ceremony. Wagner (second from left) receives the award from (left to right): NASA astronaut Randy Bresnik, NASA Exploration Systems Development Mission Directorate Acting Associate Administrator Dr. Lori Glaze, and NASA Space Operations Mission Directorate Associate Administrator Kenneth Bowersox. NASA/Kennedy Space Center Melissa Wagner of Pass Christian, Mississippi, is a NASA contract specialist in the Office of Procurement at NASA Stennis. She received the honor for contributions to NASA’s Artemis campaign by identifying potential risks related to propulsion test efforts in support of the initiative, resulting in successful mitigation actions.
NASA’s Stennis Space Center employee Samone Wilson of Hattiesburg, Mississippi, is presented with the NASA Space Flight Awareness Program Honoree Award during a March 10 ceremony. Wilson (second from left) receives the award from (left to right): NASA astronaut Randy Bresnik, NASA Space Operations Mission Directorate Associate Administrator Kenneth Bowersox, and NASA Exploration Systems Development Mission Directorate Acting Associate Administrator Dr. Lori Glaze.NASA/Kennedy Space Center Samone Wilson of Hattiesburg, Mississippi, is a NASA public affairs specialist in the Office of Communications at NASA Stennis. She received the honor for her work in telling others about NASA and NASA Stennis activities and missions.
Timothy Miller of Pearl River, Louisiana, is a senior drafter for Syncom Space Services at NASA Stennis. Although unable to attend the ceremony, he received the honor for contributions supporting flight systems integration, facility readiness, and cost reduction with his use of Creo Parametric modeling, a powerful 3D software.
Madison Monti of Kiln, Mississippi, is a security support specialist for Chenega Global Protection at NASA Stennis. Although unable to attend the ceremony, she received the honor for contributions supporting the badging office at NASA Stennis to ensure a consistent, efficient, and secure process.
NASA astronaut Randy Bresnik, Space Operations Mission Directorate Associate Administrator Kenneth Bowersox, and Exploration Systems Development Mission Directorate Acting Associate Administrator Dr. Lori Glaze presented the awards.
Bresnik, assistant-to-the-chief of the Astronaut Office for Exploration, was selected as a NASA astronaut in 2004. He manages the development and testing of everything that will operate beyond low-Earth orbit on Artemis missions. Bresnik previously served as commander of the International Space Station for Expedition 53 and flight engineer for Expedition 52.
In recognition of flight program contributions, honorees toured NASA’s Kennedy Space Center in Florida and viewed the SpaceX Dragon spacecraft named Endurance in conjunction with the launch of NASA’s SpaceX Crew-10.
The spacecraft carried NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscomos cosmonaut Kirill Pesko to the International Space Station on March 14 as part of NASA’s Commercial Crew Program. NASA’s Space Flight Awareness Program recognizes outstanding job performances and contributions by civil service and contract employees throughout the year and focuses on excellence in quality and safety in support of human spaceflight. The Honoree Award is one of the highest honors presented to employees for their dedication to quality work and flight safety. Recipients must have contributed beyond their normal work requirements toward achieving a particular human spaceflight program goal; contributed to a major cost savings; been instrumental in developing material that increases reliability, efficiency or performance; assisted in operational improvements; or been a key player in developing a beneficial process improvement.
For information about Silver Snoopy and other Space Flight Awareness awards, visit:
SFA Honoree Award – NASA
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.