Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Sees a… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   3 Min Read NASA’s Hubble Sees a Stellar Volcano
      NASA’s Hubble Space Telescope captures a spectacular view the star R Aquarii. Credits:
      NASA, ESA, Matthias Stute , Margarita Karovska , Davide De Martin (ESA/Hubble), Mahdi Zamani (ESA/Hubble) NASA’s Hubble Space Telescope has provided a dramatic and colorful close-up look at one of the most rambunctious stars in our galaxy, weaving a huge spiral pattern among the stars.
      Located approximately 700 light-years away, a binary star system called R Aquarii undergoes violent eruptions that blast out huge filaments of glowing gas. The twisted stellar outflows make the region look like a lawn sprinkler gone berserk. This dramatically demonstrates how the universe redistributes the products of nuclear energy that form deep inside stars and jet back into space.
      R Aquarii belongs to a class of double stars called symbiotic stars. The primary star is an aging red giant and its companion is a compact burned-out star known as a white dwarf. The red giant primary star is classified as a Mira variable that is over 400 times larger than our Sun. The bloated monster star pulsates, changes temperature, and varies in brightness by a factor of 750 times over a roughly 390-day period. At its peak the star is blinding at nearly 5,000 times our Sun’s brightness.
      This NASA Hubble Space Telescope image features the binary star system R Aquarii. NASA, ESA, Matthias Stute , Margarita Karovska , Davide De Martin (ESA/Hubble), Mahdi Zamani (ESA/Hubble) When the white dwarf star swings closest to the red giant along its 44-year orbital period, it gravitationally siphons off hydrogen gas. This material accumulates on the dwarf star’s surface until it undergoes spontaneous nuclear fusion, making that surface explode like a gigantic hydrogen bomb. After the outburst, the fueling cycle begins again.
      This outburst ejects geyser-like filaments shooting out from the core, forming weird loops and trails as the plasma emerges in streamers. The plasma is twisted by the force of the explosion and channeled upwards and outwards by strong magnetic fields. The outflow appears to bend back on itself into a spiral pattern. The plasma is shooting into space over 1 million miles per hour – fast enough to travel from Earth to the Moon in 15 minutes! The filaments are glowing in visible light because they are energized by blistering radiation from the stellar duo.
      Hubble first observed the star in 1990. R Aquarii was resolved into two very bright stars separated by about 1.6 billion miles. The ESA/Hubble team now has made a unique timelapse of R Aquarii’s dynamic behavior, from observations spanning from 2014 to 2023. Across the five images, the rapid and dramatic evolution of the binary star and its surrounding nebula can be seen. The binary star dims and brightens due to strong pulsations in the red giant star.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This video features five frames spanning from 2014 to 2023 of R Aquarii. These frames show the brightness of the central binary changing over time due to strong pulsations in the red giant star. The central structures spiral outward due to their interaction with material previously ejected by the binary. This timelapse highlights the value of Hubble’s high resolution optical observations in the changing universe, known as time-domain astronomy. NASA, ESA, Matthias Stute , Margarita Karovska , Davide De Martin , Mahdi Zamani , N. Bartmann (ESA/Hubble) The scale of the event is extraordinary even in astronomical terms. Space-blasted material can be traced out to at least 248 billion miles from the stars, or 24 times our solar system’s diameter. Images like these and more from Hubble are expected to revolutionize our ideas about such unique stellar “volcanoes” as R Aquarii.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Bethany Downer
      ESA/Hubble
      Share








      Details
      Last Updated Oct 16, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Binary Stars Goddard Space Flight Center Hubble Space Telescope Science Mission Directorate Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      The Death Throes of Stars


      From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


      Exploring the Birth of Stars



      Hubble Focus: The Lives of Stars


      NASA’s Hubble Space Telescope team has released a new e-book called “Hubble Focus: The Lives of Stars.” This e-book highlights…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s 2001 Mars Odyssey orbiter captured this single image of Olympus Mons, the tallest volcano in the solar system, on March 11, 2024. Besides providing an unprecedented view of the volcano, the image helps scientists study different layers of material in the atmosphere, including clouds and dust.NASA/JPL-Caltech/ASU The 23-year-old orbiter is taking images that offer horizon-wide views of the Red Planet similar to what astronauts aboard the International Space Station see over Earth.
      NASA’s longest-lived Mars robot is about to mark a new milestone on June 30: 100,000 trips around the Red Planet since launching 23 years ago. During that time, the 2001 Mars Odyssey orbiter has been mapping minerals and ice across the Martian surface, identifying landing sites for future missions, and relaying data to Earth from NASA’s rovers and landers.
      Scientists recently used the orbiter’s camera to take a stunning new image of Olympus Mons, the tallest volcano in the solar system. The image is part of a continuing effort by the Odyssey team to provide high-altitude views of the planet’s horizon. (The first of these views was published in late 2023.) Similar to the perspective of Earth astronauts get aboard the International Space Station, the view enables scientists to learn more about clouds and airborne dust at Mars.
      Taken on March 11, the most recent horizon image captures Olympus Mons in all its glory. With a base that sprawls across 373 miles (600 kilometers), the shield volcano rises to a height of 17 miles (27 kilometers).
      “Normally we see Olympus Mons in narrow strips from above, but by turning the spacecraft toward the horizon we can see in a single image how large it looms over the landscape,” said Odyssey’s project scientist, Jeffrey Plaut of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission. “Not only is the image spectacular, it also provides us with unique science data.”
      In addition to offering a freeze frame of clouds and dust, such images, when taken across many seasons, can give scientists a more detailed understanding of the Martian atmosphere.
      This infographic highlights just how much data and how many images NASA’s 2001 Mars Odyssey orbiter has collected in its 23 years of operation around the Red Planet.NASA/JPL-Caltech A bluish-white band at the bottom of the atmosphere hints at how much dust was present at this location during early fall, a period when dust storms typically start kicking up. The purplish layer above that was likely due to a mixture of the planet’s red dust with some bluish water-ice clouds. Finally, toward the top of the image, a blue-green layer can be seen where water-ice clouds reach up about 31 miles (50 kilometers) into the sky.
      How They Took the Picture
      Named after Arthur C. Clarke’s classic science-fiction novel “2001: A Space Odyssey,” the orbiter captured the scene with a heat-sensitive camera called the Thermal Emission Imaging System, or THEMIS, which Arizona State University in Tempe built and operates. But because the camera is meant to look down at the surface, getting a horizon shot takes extra planning.
      By firing thrusters located around the spacecraft, Odyssey can point THEMIS at different parts of the surface or even slowly roll over to view Mars’ tiny moons, Phobos and Deimos.
      The recent horizon imaging was conceived as an experiment many years ago during the landings of NASA’s Phoenix mission in 2008 and Curiosity rover in 2012. As with other Mars landings before and after those missions touched down, Odyssey played an important role relaying data as the spacecraft barreled toward the surface.
      Laura Kerber, deputy project scientist for NASA’s Mars Odyssey orbiter, explains how and why the spacecraft in May 2023 captured a view of the Red Planet similar to the International Space Station’s view of Earth.
      Credit: NASA/JPL-Caltech To relay their vital engineering data to Earth, Odyssey’s antenna had to be aimed toward the newly arriving spacecraft and their landing ellipses. Scientists were intrigued when they noticed that positioning Odyssey’s antenna for the task meant that THEMIS would be pointed at the planet’s horizon.
      “We just decided to turn the camera on and see how it looked,” said Odyssey’s mission operations spacecraft engineer, Steve Sanders of Lockheed Martin Space in Denver. Lockheed Martin built Odyssey and helps conduct day-to-day operations alongside the mission leads at JPL. “Based on those experiments, we designed a sequence that keeps THEMIS’ field-of-view centered on the horizon as we go around the planet.”
      The Secret to a Long Space Odyssey
      What’s Odyssey secret to being the longest continually active mission in orbit around a planet other than Earth?
      “Physics does a lot of the hard work for us,” Sanders said. “But it’s the subtleties we have to manage again and again.”
      These variables include fuel, solar power, and temperature. To ensure Odyssey uses its fuel (hydrazine gas) sparingly, engineers have to calculate how much is left since the spacecraft doesn’t have a fuel gauge. Odyssey relies on solar power to operate its instruments and electronics. This power varies when the spacecraft disappears behind Mars for about 15 minutes per orbit. And temperatures need to stay balanced for all of Odyssey’s instruments to work properly.
      “It takes careful monitoring to keep a mission going this long while maintaining a historical timeline of scientific planning and execution — and innovative engineering practices,” said Odyssey’s project manager, Joseph Hunt of JPL. “We’re looking forward to collecting more great science in the years ahead.”
      More about Odyssey:
      https://science.nasa.gov/mission/odyssey/
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-092
      Share
      Details
      Last Updated Jun 27, 2024 Related Terms
      Mars Odyssey Deimos Jet Propulsion Laboratory Mars Mars Moons Phobos Explore More
      5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 21 hours ago 6 min read NASA’s Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io
      Article 23 hours ago 5 min read Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Mars has some of the most impressive volcanoes in the Solar System. ESA’s Mars Express has now imaged the pitted, fissured flank of the planet’s second-tallest: Ascraeus Mons.
      View the full article
    • By USH
      On March 7, 2023 a webcam captured a cylindrical object seemly emerging from the side of the Popocatépetl volcano in Mexico and rises into the sky until it is no longer visible. 

      The well-known ufologist Jaime Maussan assumed that the object was a transmedium UFO of non-human origin. 
      The Popocatépetl volcano is known for its many mysterious UFOs flying in, out or over the volcano over the years but to date, there is no explanation for the presence of these objects, but it is said that a secret alien base is located inside or near the volcano.
        View the full article
    • By USH
      A mysterious ball of light streaking across the sky seen in a video captured by a webcam monitoring the active Mount Merapi volcano in Indonesia on January 24, 2023. 

      Indonesia's Space Research Center said that it was a Falconsat-3 satellite burning up upon reentering the Earth's atmosphere while others explained that the phenomenon was an aircraft flying at that specific location at the time of the sighting. 
      There are various theories about what the orb could be, but without concrete evidence, it is difficult to say for certain. But some people believe that it could be of extraterrestrial origin.
        View the full article
  • Check out these Videos

×
×
  • Create New...