Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Department of the Air Force released the memorandum DEI and Gender Ideology Publication Review.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 3 min read
      Sols 4441-4442: Winter is Coming
      NASA’s Mars rover Curiosity acquired this image of its workspace, which includes some polygonal fracture features just to the left of the top center of the image, using its Left Navigation Camera on sol 4439, or Martian day 4,439 of the Mars Science Laboratory mission, on Jan. 31, 2025, at 05:43:05 UTC. NASA/JPL-Caltech Earth planning date: Friday, Jan. 31, 2025
      Here in Earth’s northern hemisphere, the days are slowly getting longer, bringing with them the promise of an end to winter. While we are anticipating the return of warmer temperatures, just over 100 million kilometers (more than 62 million miles) away, Curiosity is starting to feel the bite of the colder season.
      One of the quirks of Mars’ orbital configuration is that aphelion (when Mars is farthest from the Sun) occurs about a month and a half before the southern winter solstice. This means that winters in the southern hemisphere (where Curiosity is located) are both longer and colder than those in the northern hemisphere. Consequently, we need to spend more of our power on keeping the rover warm, limiting the time that can be spent doing science. 
      Today’s plan was fairly constrained by the available power, so our various instrument and science teams had to carefully coordinate their requests to ensure that we stay within the power limits that have been budgeted out over the next several plans. Our team is never one to back down from a challenge, so this plan squeezes as much science as possible out of every watt-hour of power we were given.
      Our drive from Wednesday’s plan completed successfully (quite an accomplishment in the current terrain!). One of our wheels ended up perched a few centimetres up on a rock, so we aren’t able to use APXS or DRT today, but we were still able to unstow the arm to take some MAHLI images. 
      This plan kicks off with a pair of ChemCam and Mastcam coordinated activities. The first of these two focuses on some interesting polygonal fractures that we ended up parked in front of (see the image above). ChemCam will use its LIBS laser on these fractures before they are imaged by Mastcam. ChemCam will then use its RMI camera to take a mosaic of some features on the crater floor way off in the distance, which Mastcam will also image. Mastcam then goes it alone, with images of “Vivian Creek” (some sedimentary layers in today’s contact science target), “Dawn Mine” (a potential meteorite), and a trough off of the rover’s right side. The Environmental Science (ENV) team will continue their monitoring of the environment with a Mastcam tau to measure dust in the atmosphere as well as Navcam cloud and dust devil movies. After a short nap, the arm is unstopped to take a number of MAHLI images of “Coldwater Canyon,” over a range of distances between 5 and 25 centimeters away (about 2-10 inches).
      The second sol of this plan is largely consumed by ENV activities, including another tau and a Navcam line-of-sight observation to monitor dust. A big chunk of this sol’s plan is taken up by ChemCam passive observations (not using the LIBS laser) of the atmosphere. This “passive sky” observation allows us to measure atmospheric aerosol properties and the amount of oxygen and water in the air. Of course, ENV couldn’t have all the fun, so this sol also contains a typical ChemCam LIBS observation of “Big Dalton” with a Mastcam image afterward. After stowing the arm, we will drive off from our current location.
      Right before handing off to Monday’s plan, we wrap up with our typical early-morning ENV weekend science time, which includes more tau and line-of-sight dust observations and several Navcam cloud movies. RAD, REMS, and DAN also continue their monitoring of the environment throughout this plan.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Feb 04, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4439-4440: A Lunar New Year on Mars


      Article


      4 days ago
      4 min read Sols 4437-4438: Coordinating our Dance Moves


      Article


      6 days ago
      2 min read Sols 4434-4436: Last Call for Clouds


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      The 2024 Annual Highlights of Results from the International Space Station is coming soon. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.
      Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth. Credits: University of Nebraska-Lincoln Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.
      The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.
      Some of the findings presented in this edition include:
      Improved machine learning algorithms to detect space debris (Italian Space Agency) Visuospatial processing before and after spaceflight (CSA) Metabolic changes during fasting intervals in astronauts (ESA) Vapor bubble production for the improvement of thermal systems (NASA) The survival of microorganisms in space (Roscosmos) Immobilization of particles for the development of optical materials (JAXA) The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.
      For the Annual Highlights of Results 2023, click here.
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
    • By NASA
      Caption: As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ second delivery to the Moon will carry NASA technology demonstrations and science investigations on their Nova-C class lunar lander. Credit: Intuitive Machines For the second time, Intuitive Machines will launch a lunar lander to deliver NASA technology demonstrations and science investigations to the Moon for the benefit of all. Media accreditation is open for the IM-2 launch, part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the Moon. 

      The Intuitive Machines Nova-C class lunar lander will launch on a SpaceX Falcon 9 rocket and carry NASA science, technology demonstrations, and other commercial payloads to Mons Mouton, a lunar plateau near the Moon’s South Pole region. Liftoff is targeted for a multi-day launch window, which opens no earlier than late February, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

      Media prelaunch and launch activities will take place at NASA Kennedy and are open to U.S. citizens and international media. U.S. media must apply by Wednesday, Feb. 12, and international media must apply by Wednesday, Feb. 5.

      Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov

      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, such as space for satellite trucks, tents, or electrical connections, please email by Wednesday, Feb. 12, to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      Among the items on its lander, the IM-2 mission will deliver one of the first on-site, or in-situ, demonstrations of resource utilization on the Moon, using a drill and mass spectrometer to measure the volatiles content of subsurface materials. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone mobility solution.

      Launching as a rideshare alongside the IM-2 delivery NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      A successful landing will help support the CLPS model for commercial payload deliveries to the lunar surface, as another step toward a sustainable lunar future. As a primary customer of CLPS, NASA is investing in lower-cost methods of Moon deliveries and is one of multiple customers for these flights.

      NASA is working with several U.S. companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on task orders to deliver NASA payloads to the Moon. Contract awards cover end-to-end commercial payload delivery services, including payload integration, mission operations, launch from Earth, and landing on the surface of the Moon. These contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028.

      For more information about the agency’s Commercial Lunar Payload Services initiative, see:
      https://www.nasa.gov/clps
      -end-

      Alise Fisher / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov  

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 LocationJohnson Space Center Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
    • By Space Force
      The Space Force Year in Review is a collection of photos that showcase the men and women of the U.S. Space Force participating in activities and operations necessary to develop and protect U.S. interests in space.

      View the full article
  • Check out these Videos

×
×
  • Create New...