Members Can Post Anonymously On This Site
Ariane 6 pre-flight 'plumbing' tests
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Dash 7 aircraft that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project is seen taking off from Moses Lake, Washington en route to Seattle for a ceremony unveiling its new livery. The aircraft is currently operating with a traditional fuel-based propulsion system but will eventually be modified with a hybrid electric system. NASA / David C. Bowman Parked under the lights inside a hangar in Seattle, a hybrid electric research aircraft from electric motor manufacturer magniX showed off a new look symbolizing its journey toward helping NASA make sustainable aviation a reality.
During a special unveiling ceremony hosted by magniX on Aug. 22, leaders from the company and NASA revealed the aircraft, with its new livery, to the public for the first time at King County International Airport, commonly known as Boeing Field.
The aircraft is a De Havilland Dash 7 that was formerly used for carrying cargo. Working under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project, magniX will modify it to serve as a testbed for hybrid electric aircraft propulsion research.
The company’s goal under EPFD is to demonstrate potential fuel savings and performance boosts with a hybrid electric system for regional aircraft carrying up to 50 passengers. These efforts will help reduce environmental impacts from aviation by lowering greenhouse gas emissions.
This livery recognizes the collaborative effort focused on proving that hybrid electric flight for commercial aircraft is feasible.
“We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.”
Lee Noble, director for NASA’s Integrated Aviation Systems Program (right) and Robert Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate (middle) chat with an AeroTEC test pilot for the Dash 7. Battery packs are stored along the floor of the cabin for magniX’s hybrid electric flight demonstrationsNASA / David C. Bowman Collaborative Effort
NASA is collaborating with industry to modify existing planes with new electrified aircraft propulsion systems. These aircraft testbeds will help demonstrate the benefits of hybrid electric propulsion systems in reducing fuel burn and emissions for future commercial aircraft, part of NASA’s broader mission to make air travel more sustainable.
“EPFD is about showing how regional-scale aircraft, through ground and flight tests, can be made more sustainable through electric technology that is available right now,” said Ben Loxton, vice president for magniX’s work on the EPFD project.
Thus far, magniX has focused on developing a battery-powered engine and testing it on the ground to make sure it will be safe for work in the air. The company will now begin transitioning over to a new phase of the project — transforming the Dash 7 into a hybrid electric research vehicle.
“With the recent completion of our preliminary design review and baseline flight tests, this marks a transition to the next phase, and the most exciting phase of the project: the modification of this Dash 7 with our magniX electric powertrain,” Loxton said.
To make this possible, magniX is working with their airframe integrator AeroTEC to help modify and prepare the aircraft for flight tests that will take place out of Moses Lake, Washington. Air Tindi, which supplied the aircraft to magniX for this project, will help with maintenance and support of the aircraft during the testing phases.
The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.NASA/David C. Bowman Creating a Hybrid Electric Aircraft
A typical hybrid electric propulsion system combines different sources of energy, such as fuel and electricity, to power an aircraft. For magniX’s demonstration, the modified Dash 7 will feature two electric engines fed by battery packs stored in the cabin, and two gas-powered turboprops.
The work will begin with replacing one of the aircraft’s outer turboprop engines with a new, magni650-kilowatt electric engine – the base of its hybrid electric system. After testing those modifications, magniX will swap out the remaining outer turboprop engine for an additional electric one.
Earlier this year, magniX and NASA marked the milestone completion of successfully testing the battery-powered engine at simulated altitude. Engineers at magniX are continuing ground tests of the aircraft’s electrified systems and components at NASA’s Electric Aircraft Testbed (NEAT) facility in Sandusky, Ohio.
By rigorously testing these new technologies under simulated flight conditions, such as high altitudes and extreme temperatures, researchers can ensure each component operates safely before taking to the skies.
The collaboration between EPFD, NASA, GE Aerospace, and magniX works to advance hybrid electric aircraft propulsion technologies for next-generation commercial aircraft in the mid-2030 timeframe. NASA is working with these companies to conduct two flight demonstrations showcasing different approaches to hybrid electric system design.
Researchers will use data gathered from ground and flight tests to identify and reduce certification gaps, as well as inform the development of new standards and regulations for future electrified aircraft.
“We at NASA are excited about EPFD’s potential to make aviation more sustainable,” Pearce said. “Hybrid electric propulsion on a megawatt scale accelerates U.S. progress toward its goal of net-zero greenhouse gas emissions by 2050, benefitting all who rely on air transportation every day.”
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA G-IV Plane Will Carry Next-Generation Science Instrument
Article 6 days ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators
Article 1 week ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Sep 03, 2024 EditorJim BankeContactMichael Jorgensen Related Terms
Aeronautics Aeronautics Research Mission Directorate Electrified Powertrain Flight Demo Glenn Research Center Green Aviation Tech Integrated Aviation Systems Program View the full article
-
By NASA
Both versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope appear in this photo, taken in the largest clean room at NASA’s Goddard Space Flight Center. The flight version lies flat in the foreground, while the qualification assembly stands upright in the background. The flight panels will shade the mission’s instruments and power the observatory. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope’s Solar Array Sun Shield has successfully completed recent tests, signaling that the assembly is on track to be completed on schedule. The panels are designed to power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
The Roman team has two sets of these panels –– one that will fly aboard the observatory and another as a test structure, used specifically for preliminary assessments.
Engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, evaluated the test version in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment the flight panels will experience in space. Since the panels will be stowed for launch, the team practiced deploying them in space-like conditions.
The solar panels for NASA’s Nancy Grace Roman Space Telescope are undergoing assessment in a test chamber at the agency’s Goddard Space Flight Center in this photo.NASA/Chris Gunn Meanwhile, a vendor built up the flight version by fitting the panels with solar cells. After delivery to Goddard, technicians tested the solar cells by flashing the panels with a bright light that simulates the Sun.
“We save a significant amount of time and money by using two versions of the panels, because we can do a lot of preliminary tests on a spare while moving further in the process with the flight version,” said Jack Marshall, the Solar Array Sun Shield lead at NASA Goddard. “It streamlines the process and also avoids risking damage to the panels that will go on the observatory, should testing reveal a flaw.”
Next spring, the flight version of the Solar Array Sun Shield will be installed on the Roman spacecraft. Then, the whole spacecraft will go through thorough testing to ensure it will hold up during launch and perform as expected in space.
To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Explore More
5 min read NASA Tests Deployment of Roman Space Telescope’s ‘Visor’
Article 2 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 1 month ago 3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
Article 4 months ago Share
Details
Last Updated Aug 26, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Space Communications Technology View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Life Support Technician Mathew Sechler provides support as the X-59’s ejection seat is installed into the aircraft at Lockheed Martin Skunk Works’ facilities in Palmdale, California. Completion of the seat’s installation marks an integration milestone for the aircraft as it prepares for final ground tests.Lockheed Martin The team preparing NASA’s X-59 continues through testing in preparation for the quiet supersonic aircraft to make its first flight. This includes a trio of important structural tests and critical inspections on the path to flight.
The X-59 is an experimental plane that will fly faster than the speed of sound without a loud sonic boom. It will be the first of its kind to fly, with the goal of gathering sound data for NASA’s Quesst mission, which could open the door to commercial supersonic overland flight in the future.
Because of its unique design, the X-59’s engineering team must do all it can to predict every aspect of it before it ever takes off, including how its fuselage, wings, and the control surfaces will behave together in flight. That means testing on the ground to give the team the data it needs to validate the models they’ve developed.
“The testing not only tells us how structurally sound the aircraft is, but also what kind of forces it can take once it is in the air.
WALT SILVA
Senior Research Scientist at NASA Langley Research Center in Hampton, Virginia, who serves as structures lead for the X-59.
The X-59’s structural tests provide the team with valuable feedback. From 2022 to –2024 the engineers collected data on the forces that the aircraft will experience in flight and the potential effects of vibrations on the plane.
“You do these tests, you get the data, and things compare well in some areas and in other areas you want to improve them,” Silva said. “So, you figure that all out and then you work towards making it better.”
Lockheed Martin technicians temporarily remove the canopy from the X-59 in preparation for final installation of the ejection seat into the aircraft. Lockheed Martin Earlier this year, the X-59 underwent structural coupling tests that saw its control surfaces, including its ailerons, flaps and rudder, moved by computer. It was the last of three vital structural tests. In 2023, engineers applied “shakers” to parts of the plane to evaluate its response to vibrations, and in early 2022 they conducted a proof test to ensure the aircraft would absorb the forces it will experience during flight. This year the X-59 ejection seat was installed and passed inspection. The ejection seat is an additional safety measure that is critical for pilot safety during all aspects of flight.
With structural tests and ejection seat installation complete, the aircraft will advance toward a new milestone, starting up its engines for a series of test runs on the ground.
Also ahead for the X-59 is testing the airplane’s avionics and extensive wiring for potential electromagnetic interference, imitating flight conditions in a ground test environment, and finally, completing taxi tests to validate ground mobility before first flight.
“First flights are always very intense,” said Natalie Spivey, aerospace engineer at NASA’s Armstrong Flight Research Center in Edwards, California. “There’s lots of anticipation, but we’re ready to get there and see how the aircraft responds in the air. It’ll be very exciting.”
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read Automated Technology Developed at Glenn Launches to Space
Article 35 mins ago 1 min read Cleveland High School Students Land STEM Career Exploration Experience
Article 35 mins ago 1 min read NASA Lands at National Cherry Festival
Article 35 mins ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Supersonic Flight
Explore NASA’s History
Share
Details
Last Updated Aug 13, 2024 EditorLillian GipsonContactKristen Hatfieldkristen.m.hatfield@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
-
By NASA
In this clip, engineers are testing the the Nancy Grace Roman Space Telescope’s Deployable Aperture Cover. This component is responsible for keeping light out of the telescope barrel. It will be deployed once in orbit using a soft material attached to support booms and remains in this position throughout the observatory’s lifetime. Credit: NASA’s Goddard Space Flight Center The “visor” for NASA’s Nancy Grace Roman Space Telescope recently completed several environmental tests simulating the conditions it will experience during launch and in space. Called the Deployable Aperture Cover, this large sunshade is designed to keep unwanted light out of the telescope. This milestone marks the halfway point for the cover’s final sprint of testing, bringing it one step closer to integration with Roman’s other subsystems this fall.
Designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the Deployable Aperture Cover consists of two layers of reinforced thermal blankets, distinguishing it from previous hard aperture covers, like those on NASA’s Hubble. The sunshade will remain folded during launch and deploy after Roman is in space via three booms that spring upward when triggered electronically.
“With a soft deployable like the Deployable Aperture Cover, it’s very difficult to model and precisely predict what it’s going to do — you just have to test it,” said Matthew Neuman, a Deployable Aperture Cover mechanical engineer at Goddard. “Passing this testing now really proves that this system works.”
After a successful test deployment at NASA’s Goddard Space Flight Center in Greenbelt, Md., clean room technicians inspect the Deployable Aperture Cover for NASA’s Nancy Grace Roman Space Telescope.NASA/Chris Gunn During its first major environmental test, the sunshade endured conditions simulating what it will experience in space. It was sealed inside NASA Goddard’s Space Environment Simulator — a massive chamber that can achieve extremely low pressure and a wide range of temperatures. Technicians placed the DAC near six heaters — a Sun simulator — and thermal simulators representing Roman’s Outer Barrel Assembly and Solar Array Sun Shield. Since these two components will eventually form a subsystem with the Deployable Aperture Cover, replicating their temperatures allows engineers to understand how heat will actually flow when Roman is in space.
When in space, the sunshade is expected to operate at minus 67 degrees Fahrenheit, or minus 55 degrees Celsius. However, recent testing cooled the cover to minus 94 degrees Fahrenheit, or minus 70 degrees Celsius — ensuring that it will work even in unexpectedly cold conditions. Once chilled, technicians triggered its deployment, carefully monitoring through cameras and sensors onboard. Over the span of about a minute, the sunshade successfully deployed, proving its resilience in extreme space conditions.
“This was probably the environmental test we were most nervous about,” said Brian Simpson, project design lead for the Deployable Aperture Cover at NASA Goddard. “If there’s any reason that the Deployable Aperture Cover would stall or not completely deploy, it would be because the material became frozen stiff or stuck to itself.”
Brian Simpson, product design lead at NASA’s Goddard Space Flight Center, adjusts sensors on the Deployable Aperture Cover for NASA’s Nancy Grace Roman Space Telescope. The sensors will collect data on the DAC’s response to testing.NASA/Chris Gunn If the sunshade were to stall or partially deploy, it would obscure Roman’s view, severely limiting the mission’s science capabilities.
After passing thermal vacuum testing, the sunshade underwent acoustic testing to simulate the launch’s intense noises, which can cause vibrations at higher frequencies than the shaking of the launch itself. During this test, the sunshade remained stowed, hanging inside one of Goddard’s acoustic chambers — a large room outfitted with two gigantic horns and hanging microphones to monitor sound levels.
With the sunshade plastered in sensors, the acoustic test ramped up in noise level, eventually subjecting the cover to one full minute at 138 decibels — louder than a jet plane’s takeoff at close range! Technicians attentively monitored the sunshade’s response to the powerful acoustics and gathered valuable data, concluding that the test succeeded.
Technicians prepare for acoustic testing at NASA’s Goddard Space Flight Center in Greenbelt, Md. During testing, the Deployable Aperture Cover for NASA’s Nancy Grace Roman Space Telescope was suspended in the air and exposed to 138 decibels for one full minute to simulate launch’s intense noise.NASA/Chris Gunn “For the better part of a year, we’ve been building the flight assembly,” Simpson said. “We’re finally getting to the exciting part where we get to test it. We’re confident that we’ll get through with no problem, but after each test we can’t help but breathe a collective sigh of relief!”
Next, the Deployable Aperture Cover will undergo its two final phases of testing. These assessments will measure the sunshade’s natural frequency and response to the launch’s vibrations. Then, the Deployable Aperture Cover will integrate with the Outer Barrel Assembly and Solar Array Sun Shield this fall.
For more information about the Roman Space Telescope, visit NASA’s website. To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Laine Havens
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Explore More
6 min read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
Article 2 months ago 3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
Article 4 months ago 3 min read NASA Begins Integrating ‘Nervous System’ for Roman Space Telescope
Article 12 months ago Share
Details
Last Updated Aug 09, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Space Communications Technology View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.