Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This image from NASA’s James Webb Space Telescope shows the dwarf galaxy NGC 4449. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team President Biden has named 19 researchers who contribute to NASA’s mission as recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE). These recipients are among nearly 400 federally funded researchers receiving the honor.  
      Established in 1996 by the National Science and Technology Council, the PECASE Award is the highest honor given by the U.S. government to scientists and engineers who are beginning their research careers. The award recognizes recipients’ potential to advance the frontiers of scientific knowledge and their commitment to community service, as demonstrated through professional leadership, education or community outreach. 
      “I am so impressed with these winners and what they have accomplished,” said Kate Calvin, chief scientist, NASA Headquarters in Washington. “They have made valuable contributions to NASA science and engineering, and I can’t wait to see what they do in the future.” 
      The following NASA recipients were nominated by the agency: 
      Natasha Batalha, NASA Ames Research Center, Silicon Valley, California – for transformational scientific research in the development of open-source systems for the modeling of exoplanet atmospheres and observations  Elizabeth Blaber, Rensselaer Polytechnic Institute, Troy, New York – for transformative spaceflight and ground-based space biology research  James Burns, University of Virginia, Charlottesville – for innovative research at the intersection of metallurgy, solid mechanics and chemistry   Egle Cekanaviciute, NASA Ames Research Center – for producing transformational research to enable long-duration human exploration on the Moon and Mars  Nacer Chahat, NASA Jet Propulsion Laboratory, Pasadena, California – for leading the innovation of spacecraft antennas that enable NASA deep space and earth science missions  Ellyn Enderlin, Boise State University, Idaho – for innovative methods to study glaciers using a wide variety of satellite datasets  David Estrada, Boise State University, Idaho – for innovative research in the areas of printed electronics for in space manufacturing and sensors for harsh environments  Burcu Gurkan, Case Western Reserve University, Cleveland, Ohio – for transforming contemporary approaches to energy storage and carbon capture to be safer and more economical, for applications in space and on Earth  Elliott Hawkes, University of California, Santa Barbara – for highly creative innovations in bio-inspired robotics that advance science and support NASA’s mission  John Hwang, University of California, San Diego – for innovative approach to air taxi design and key contributions to the urban air mobility industry   James Tuttle Keane, NASA Jet Propulsion Laboratory – for innovative and groundbreaking planetary geophysics research, and renowned planetary science illustrations  Kaitlin Kratter, University of Arizona, Tucson – for leadership in research about the formation and evolution of stellar and planetary systems beyond our own   Lyndsey McMillon-Brown, NASA Glenn Research Center, Cleveland, Ohio – for leadership in photovoltaic research, development, and demonstrations  Debbie Senesky, Stanford University, California – for research that has made it possible to operate sensing and electronic devices in high-temperature and radiation-rich environments  Hélène Seroussi, Dartmouth College, Hanover, New Hampshire  – for leading the cryosphere science community in new research directions about the role of ocean circulation in the destabilization of major parts of Antarctica’s ice sheets  Timothy Smith, NASA Glenn Research Center – for achievements in materials science research, specifically in high temperature alloy innovation  Mitchell Spearrin, University of California, Los Angeles – for pioneering scientific and technological advancements in multiple areas critical to NASA’s current and future space missions including rocket propulsion, planetary entry, and sensor systems  Michelle Thompson, Purdue University, West Lafayette, Indiana  – for research in planetary science and dedication to training the next generation of STEM leaders  Mary Beth Wilhelm, NASA Ames Research Center – for achievements in science, technology, and community outreach through her work in the fields of space science and astrobiology  The PECASE awards were created to highlight the importance of science and technology for America’s future. These early career awards foster innovative developments in science and technology, increase awareness of careers in science and engineering, provide recognition to the scientific missions of participating agencies, and enhance connections between research and challenges facing the nation. For a complete list of award winners, visit: 
      https://www.whitehouse.gov/ostp/news-updates/2025/01/14/president-biden-honors-nearly-400-federally-funded-early-career-scientists

      View the full article
    • By NASA
      NASA’s Office of STEM Engagement at Johnson Space Center in Houston offers students a unique gateway to opportunity through the High School Aerospace Scholars (HAS) program. The initiative provides Texas juniors with hands-on experience in space exploration, working on projects ranging from rocket building to problem-solving in collaborative teams. 

      The stories of HAS alumni highlight the program’s impact, showcasing how it has opened doors to diverse careers in STEM and inspired graduates to empower others.

      Johnson Community Engagement Lead Jessica Cordero, who served as the manager of the HAS program from 2018 to 2021, reflected on her time with the students:

      “I had the privilege of working with so many incredible students who brought imagination and determination to their dreams,” she said. “During HAS, they connected with peers who shared their passion for NASA and STEM, and by the time they completed the program, they had a clear vision of the degrees they would pursue in college. These students are the Artemis Generation—we are in great hands!”

      Meet Former HAS Student Neel Narayan 

      For Neel Narayan, NASA’s HAS program was a transformative experience that reshaped his understanding of space exploration and his place within it. 

      Through his time in the program, Narayan learned to navigate complex challenges with confidence. “My experience working with difficult information at HAS, combined with having mentors explain the unknown, taught me to be okay with confusion and comfortable with solving hard problems,” he said. “That’s what STEM is all about.” 
      Neel Narayan at NASA’s High School Aerospace Scholars (HAS) 20th anniversary ceremony. Before participating in the program, Narayan had a narrow view of what a STEM career entailed: long equations and solitary hours behind a computer. HAS completely dismantled that misconception. He said the program, “broke the most complex concepts into granular bites of digestible information, showing that complexity can be distilled if done correctly.” 

      “During the one-week onsite experience, I was talking to scientists, building rockets, and exploring NASA facilities—none of which involved equations!” he said. “HAS taught me that STEM is not confined to technical work.” 

      Narayan describes HAS as an eye-opening experience that redefined his approach to problem-solving. “Most of us are unaware of what we don’t know,” he said. “In collaborating with others, I was made aware of solutions that I didn’t know existed. The greatest asset you can have when solving a problem is another person.” 

      He credits the HAS community, especially his fellow scholars, with shaping his academic and professional growth. “I benefited most from the networking opportunities, particularly with the other HAS scholars in my cohort,” he said. “For those of us studying together in California, we’ve met up to discuss work, school, and external opportunities. Everyone in the program comes out very successful, and I’m grateful to have met those people and to still stay in touch with them.” 

      For high school students considering STEM but unsure of their direction, Narayan offers simple advice: keep exploring. “You don’t need to know your career path yet—in fact, you shouldn’t,” he said. “There is no better field to explore than STEM because of its vastness.” 
      Neel Narayan, University of Stanford. Narayan is currently pursuing a master’s degree in computational and mathematical engineering at Stanford University after earning an undergraduate degree in computer science. With his graduate program, Narayan is building on the foundation he developed through NASA’s HAS program. 

      Narayan aspires to contribute to the agency’s innovation and groundbreaking work. “NASA’s research changes the world, and being part of that mission is a dream I’ve had for a while,” he said. 

      Meet Sarah Braun 

      NASA’s HAS program solidified Sarah Braun’s understanding of how a STEM career could encompass her diverse interests, from design and education to plotting spacecraft orbits and planning launches. From her time in HAS to her current space exploration career, Braun believes STEM can be as multifaceted as the people who pursue it.  
      “HAS showed me the options ahead were as endless as my imagination,” she said. “The program convinced me that all my skills would be put to use in STEM, including getting to be creative and artistic.”  
      Sarah Braun engages in science, technology, engineering, and mathematics outreach at the Air Zoo Aerospace & Science Museum in Portage, Michigan, standing beside a Gemini model. The program gave her the opportunity to network, problem-solve, and collaborate with students from various backgrounds. “Learning how to communicate designs I could picture in my head was the biggest challenge, but by observing my teammates and mentors, I built the skills I needed.”  

      The networking opportunities she gained through HAS have also been instrumental to her academic and career growth. “The mentors I met through HAS have supported me throughout college and into my early career,” she said. “They taught me countless technical skills and how to best take advantage of my college years. I would never have made it to where I am today without HAS!”  

      After completing the HAS program, Braun interned with NASA, where she worked on space systems and paved the way for her career at Collins Aerospace.  
      Sarah Braun at the National Museum of the U.S. Air Force in Dayton, Ohio. She stands in front of the hardware she now works on at Collins Aerospace. Braun advises high school students uncertain about their career paths to get engaged and ask questions. “There are so many people out there who pursue STEM to follow a passion or challenge themselves,” she said. “Talking with people about what they have experienced and learned has been a huge help and inspiration for me throughout the years.”  

      She is also passionate about inspiring and educating others. “Whether I’m leading after-school STEM clubs or mentoring students, outreach and teaching have become my biggest contributions to NASA’s mission of exploration and discovery,” said Braun.  

       Meet Audrey Scott  

      Audrey Scott credits the HAS program with giving her a chance to explore science in the real world. “I experienced the excitement space could bring through livestream events like the landing of NASA’s InSight Lander mission and Cassini’s Grand Finale,” she said.  
      Audrey Scott, front, with fellow 2019 HAS graduates. Scott shared that the HAS program opened her eyes to the vast possibilities within STEM fields. Seeing the many ways to apply a STEM degree in practice broadened her perspective and inspired her to pursue her passion. 

      After HAS, Scott chose to study astrophysics at the University of Chicago in Illinois, where she is now pursuing her Ph.D. in experimental cosmology and laying the groundwork for a future in space exploration. 

      “My time with HAS and its encouragement of STEM excellence gave me the confidence I needed to take the plunge,” said Scott. 

      The program also transformed her approach to teamwork and exposed her to fast-paced problem-solving. “My school didn’t prioritize group projects, so working with people from all different backgrounds and personalities was informative for my future work in college,” she said. “HAS was a safe space to experiment with being both a leader and collaborator.”   

      She encourages high school students uncertain of their path to “try everything.” Scott advises, “If you have a moment of fascination, take advantage of that intellectual and creative energy, and learn something new. Time spent realizing you don’t like something is just as useful as time spent realizing you do.” She also recommends seeking out resources, finding mentors, and talking to everyone. 

      Scott continues to connect with some of her HAS cohort, especially young women navigating STEM paths alongside her. “We’ve been able to support each other through challenges,” she said. “Being part of HAS made me, in a way, part of the NASA family.” 
      Audrey Scott, front, with fellow 2019 HAS graduates. Scott’s HAS experience opened doors to opportunities like the Brooke Owens Fellowship, where she worked on a satellite in partnership with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and later the Illinois Space Grant award, which took her to NASA’s Jet Propulsion Laboratory in Southern California. She envisions part of her thesis research as a Ph.D. candidate taking place at a NASA center and remains open to a future at the agency.  

      “I’ll continue advocating for space exploration and pushing the boundaries of what’s known,” she said. “In my research, I’m driven by questions like, ‘What did the beginning of the universe look like—and why are we here?’”
       
      View the full article
    • By NASA
      A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions.Credit: NASA/Left to Right: Saurabh Vilekar, Marco Quadrelli, Selim Shahriar, Gyula Greschik, Martin Bermudez, Ryan Weed, Ben Hockman, Robert Hinshaw, Christine Gregg, Ryan Benson, Michael Hecht NASA selected 15 visionary ideas for its NIAC (NASA Innovative Advanced Concepts) program which develops concepts to transform future missions for the benefit of all. Chosen from companies and institutions across the United States, the 2025 Phase I awardees represent a wide range of aerospace concepts.
      The NIAC program nurtures innovation by funding early-stage technology concept studies for future consideration and potential commercialization. The combined award for the 2025 concepts is a maximum of $2.625M in grants to evaluate technologies that could enable future aerospace missions.
      “Our next steps and giant leaps rely on innovation, and the concepts born from NIAC can radically change how we explore deep space, work in low Earth orbit, and protect our home planet” said Clayton Turner, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “From developing small robots that could swim through the oceans of other worlds to growing space habitats from fungi, this program continues to change the possible.”
      The newly selected concepts include feasibility studies to explore the Sun’s influence on our solar system, build sustainable lunar habitats from glass, explore Saturn’s icy moon, and more. All NIAC studies are in the early stages of conceptual development and are not considered official NASA missions.
      Ryan Weed, Helicity Space LLC in Pasadena, California, proposes a constellation of spacecraft powered by the Helicity Drive, a compact and scalable fusion propulsion system, that could enable rapid, multi-directional exploration of the heliosphere and beyond, providing unprecedented insights on how the Sun interacts with our solar system and interstellar space. Demonstrating the feasibility of fusion propulsion could also benefit deep space exploration including crewed missions to Mars.
      Martin Bermudez, Skyeports LLC in Sacramento, California, presents the concept of constructing a large-scale, lunar glass habitat in a low-gravity environment. Nicknamed LUNGS (Lunar Glass Structure), this approach involves melting lunar glass compounds to create a large spherical shell structure. This idea offers a promising solution for establishing self-sustaining, large-scale habitats on the lunar surface.
      Justin Yim, University of Illinois in Urbana, proposes a jumping robot appropriately named LEAP (Legged Exploration Across the Plume), as a novel robotic sampling concept to explore Enceladus, a small, icy moon of Saturn that’s covered in geysers, or jets. The LEAP robots could enable collection of pristine, ocean-derived material directly from Enceladus’s jets and measurement of particle properties across multiple jets by traveling from one to another.
      “All advancements begin as an idea. The NIAC program allows NASA to invest in unique ideas enabling innovation and supporting the nation’s aerospace economy,” said John Nelson, program executive for NASA’s Innovative Advanced Concepts in Washington.
      The NIAC researchers, known as fellows, will investigate the fundamental premise of their concepts, identify potential challenges, and look for opportunities to bring these concepts to life.
      In addition to the projects mentioned above, the following selectees received 2025 NIAC Phase I grants:
      Michael Hecht, Massachusetts Institute of Technology, Cambridge: EVE (Exploring Venus with Electrolysis) Selim Shahriar, Northwestern University, Evanston, Illinois: SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity Phillip Ansell, University of Illinois, Urbana: Hy2PASS (Hydrogen Hybrid Power for Aviation Sustainable Systems) Ryan Benson, ThinkOrbital Inc., Boulder, Colorado: Construction Assembly Destination Gyula Greschik, Tentguild Engineering Co, Boulder, Colorado: The Ribbon: Structure Free Sail for Solar Polar Observation Marco Quadrelli, NASA’s Jet Propulsion Laboratory in California’s Silicon Valley: PULSAR: Planetary pULSe-tAkeRv Ben Hockman, NASA’s Jet Propulsion Laboratory in California’s Silicon Valley: TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling Kimberly Weaver, NASA’s Goddard Space Flight Center in Greenbelt, Maryland: Beholding Black Hole Power with the Accretion Explorer Interferometer John Mather NASA’s Goddard Space Flight Center in Greenbelt, Maryland: Inflatable Starshade for Earthlike Exoplanets Robert Hinshaw, NASA’s Ames Research Center in Moffett Field, California: MitoMars: Targeted Mitochondria Replacement Therapy to Boost Deep Space Endurance Christine Gregg, NASA’s Ames Research Center in Moffett Field, California: Dynamically Stable Large Space Structures via Architected Metamaterials Saurabh Vilekar, Precision Combustion, North Haven, Connecticut: Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply NASA’s Space Technology Mission Directorate funds the NIAC program, as it is responsible for developing the agency’s new cross-cutting technologies and capabilities to achieve its current and future missions.
      To learn more about NIAC, visit:
      https://www.nasa.gov/niac
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      321-431-4624
      jasmine.s.hopkins@nasa.gov
      Share
      Details
      Last Updated Jan 10, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NASA Innovative Advanced Concepts (NIAC) Program Space Technology Mission Directorate View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Rebecca Anderson, a junior enrolled at the Portage School of Leaders High School in South Bend, Indiana, spent time with NASA Glenn Research Center’s Daniel Sutliff, an acoustic engineer, on the campus of the University of Notre Dame on Nov. 7, 2024. Students witnessed the operation of the Advanced Noise Control Fan owned by NASA and on loan to the university for STEM experiences.Credit: Matt Cashore/University of Notre Dame High school students in Indiana are contributing to NASA’s groundbreaking research to develop quieter, more fuel-efficient aircraft engines.
      Their learning experience is a collaboration between aircraft noise researchers from NASA’s Glenn Research Center in Cleveland and educators from the University of Notre Dame’s Turbomachinery Laboratory. The collaboration aims to encourage students’ interest in science, technology, engineering, and math (STEM) careers.
      Recently, Notre Dame hosted students from The Portage School of Leaders High School and a team from NASA Glenn to see the Advanced Noise Control Fan operate in an outdoor setting. The fan is a NASA-owned test rig that has been configured to enable the study of a quieter aircraft engine technology. Known as the open rotor fan concept, the configuration involves an engine fan without a cover. Ground microphones were used during the test operated by Notre Dame to evaluate the radiated sound as the open rotor fan spun at various speeds.
      NASA’s Advanced Noise Control Fan is on loan at the University of Notre Dame through a Space Act Agreement. It provides a hands-on learning laboratory for students in STEM.Credit: Matt Cashore/University of Notre Dame Students from the high school, which is part of the Career Academy Network of Public Schools, used 3D printers from the school’s facilities to fabricate parts for the open rotor test fan. The parts, known as stator blades, help direct and control airflow, ensuring smooth operation of the large, exposed fan blades that are the defining feature of an open fan engine design.
      “It was beyond words,” said Rebecca Anderson, a junior from the high school. “The part I enjoyed most was when they got the fan running. It was really impressive to see how quiet it was. I feel like everyone involved in STEM would love to work for NASA, including me.”
      NASA researcher Dr. Daniel Sutliff was part of the team from NASA Glenn to spend time mentoring the students.
      “This is real-world, hands-on research for them,” Sutliff said. “If airlines are able to use technologies to make flight quieter and cleaner, passengers will have more enjoyable flights.”
      The Advanced Noise Control Fan is on loan to Notre Dame from NASA through a Space Act Agreement. The fan research is supported by NASA’s Advanced Air Transport Technology project and its Efficient Quiet Integrated Propulsors technical challenge.
      Explore More
      2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 28 mins ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 21 hours ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors 
      Article 21 hours ago View the full article
    • By NASA
      Portrait, Elaine Ho, Thursday, Jan. 23, 2020, at NASA Headquarters in Washington. Photo Credit: (NASA/Aubrey Gemignani) NASA Administrator Bill Nelson announced Monday Elaine P. Ho will serve as the next associate administrator of NASA’s Office of STEM Engagement (OSTEM), where she will lead the agency’s efforts to inspire Artemis Generation students and educators in science, technology, engineering, and mathematics (STEM). The role, based out of the agency’s headquarters in Washington, is effective immediately.
      Ho also will remain the associate administrator for the agency’s Office of Diversity and Equal Opportunity while a permanent replacement is sought. She will succeed Mike Kincaid, who retired from the agency in November after 37 years with NASA. Kris Brown, who has been serving as acting associate administrator for OSTEM, will return to her position as the office’s deputy associate administrator for strategy and integration.
      “At NASA, we know STEM education is critical for building a strong and competent future workforce,” said Nelson. “Under Elaine’s leadership, we will continue to empower students, educators, and communities to reach for the stars and tackle the challenges of tomorrow.”
      In her role as associate administrator for NASA’s Office of Diversity and Equal Opportunity, she played an instrumental part in fostering a NASA culture that values the unique backgrounds of our workforce to bolster innovation and drive mission success. Prior to that role, she served as NASA’s deputy associate administrator for OSTEM, responsible for leading and managing a wide-ranging portfolio of projects and initiatives that benefit students, universities, and educational institutions across the country.
      Before joining NASA, Ho held several roles at the White House, including senior policy advisor for the Let Girls Learn initiative in the Office of the First Lady and chief of staff of the U.S. Digital Service. In 2021, she returned to the White House on a year-long detail, serving as deputy chief of staff for workforce in the Office of Science and Technology Policy and director of Space STEM Policy for the Vice President’s National Space Council.
      Prior to her federal service career, Ho was a practicing attorney, specializing in employment law. She also served four years of active duty as a criminal prosecutor in the U.S. Air Force and continues her service as a colonel in the Air Force Reserves.
      Ho holds a civil engineering degree from Duke University and a Juris Doctor from the University of Florida.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      abbey.a.donaldson@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...