Jump to content

Getting CubeSats moving


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Getting Proba-3 fit for flight View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Farms in California’s Sacramento-San Joaquin River Delta face strict reporting requirements for water usage because the delta supplies most of the state’s freshwater. This Landsat image uses infrared wavelengths to depict vegetation.Credit: U.S. Geological Survey The 30-acre pear orchard in the Sacramento-San Joaquin River Delta has been in Brett Baker’s family since the end of the Gold Rush. After six generations, though, California’s most precious resource is no longer gold – it’s water. And most of the state’s freshwater is in the delta. 

      Landowners there are required to report their water use, but methods for monitoring were expensive and inaccurate. Recently, however, a platform called OpenET, created by NASA, the U.S. Geological Survey (USGS), and other partners, has introduced the ability to calculate the total amount of water transferred from the surface to the atmosphere through evapotranspiration. This is a key measure of the water that’s actually being removed from a local water system. It’s calculated based on imagery from Landsat and other satellites. 

       “It’s good public policy to start with a measure everyone can agree upon,” Baker said. 

      OpenET is only one of the latest uses researchers and businesses continue finding for Landsat over 50 years after the program started collecting continuous imagery of Earth’s surface. NASA has built and launched all nine of the satellites before handing them over to USGS, which manages the program. 

      Some of the most pressing questions people ask about Earth are about the food it’s producing. Agriculture and adjacent industries are among the heaviest users of Earth-imaging data, which can help assess crop health and predict yields. 
      The latest Landsat satellite, Landsat 9, went into orbit in fall of 2021. NASA and the USGS are already developing options for the next iteration of Landsat, currently known as Landsat Next.Credit: NASA Even in this well-established niche, though, new capabilities continue to emerge. One up-and-coming company is using Landsat to validate sustainable farming practices by measuring carbon stored in the ground, which can be detected in the reflectance rate in certain wavelengths. This is how Perennial Inc. is enabling emerging markets for carbon credits, through which farmers get paid for maximizing their land’s storage of carbon. 
      The company is also discovering interest among food companies that want to reduce their environmental impact by choosing eco-conscious suppliers, as well as companies in the fertilizer, farm equipment, and agricultural lending businesses. 

      Landsat also enables countless map-based apps, studies of changes in Earth’s surface cover over half a century, and so much more. 
      Read More Share
      Details
      Last Updated Oct 16, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read Controlled Propulsion for Gentle Landings 
      A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
      Article 5 days ago 2 min read Tech Today: Spraying for Food Safety
      Article 1 week ago 2 min read The Science of the Perfect Cup for Coffee 
      Material research is behind the design of a temperature-regulating mug
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Starfish Space has been awarded SBIR Phase III funding for a mission to inspect defunct satellites to increase opportunities to mitigate space debris. An artist’s concept image shows the company’s Otter spacecraft, which is capable of inspecting and deorbiting defunct spacecraft, in orbit.Starfish Space NASA is advancing an innovative approach to enabling commercial inspection of defunct, or inoperable, satellites in low Earth orbit, a precursor to capturing and repairing or removing the satellites.
      The agency has awarded Starfish Space of Seattle, Washington, a Phase III Small Business Innovation Research (SBIR) contract to complete the Small Spacecraft Propulsion and Inspection Capability (SSPICY) mission. The award follows a Phase III study, which funded four U.S. small businesses including Starfish to develop mission concepts. Starfish Space will receive $15 million over three years to execute the mission.
      The ability to inspect defunct spacecraft and identify opportunities for repair or deorbiting is critical to maintaining a safe orbital environment for spacecraft and humans. Orbital debris mitigation is a key component of NASA’s Space Sustainability Strategy.
      “The SSPICY mission is designed to mature technologies needed for U.S. commercial capabilities for satellite servicing and logistics or disposal,” said Bo Naasz, senior technical lead for in-space servicing, manufacturing, and assembly in NASA’s Space Technology Mission Directorate. “In-space inspection helps us characterize the physical state of a satellite, gather data on what may leave spacecraft stranded, and improve our understanding of fragmentations and collisions, a difficult but critical factor in a sustainable space operating environment.”
      The Starfish-led mission uses the company’s Otter spacecraft, a small satellite about the size of an oven, which is designed to inspect, dock with, and service or deorbit other satellites. Otter’s electric propulsion system will not only help it efficiently travel to multiple satellites, but the SSPICY demonstration also will mature the spacecraft’s ability to perform inspections using electric propulsion, an important enabling technology not typically used for rendezvous and proximity operations.
      During the SSPICY mission, Otter will visit and inspect multiple U.S. owned defunct satellites that have agreed to be visited and inspected – a delicate and challenging task, as satellites move quickly and are kept far apart from each other for safety. Otter will approach within hundreds of meters of each satellite to conduct inspections during mission operations. During the inspection, Otter will gather key information about each of the debris objects including their spin rate, spin axes, and current conditions of the objects’ surface materials.
      The SSPICY mission is the first commercial space debris inspection funded by NASA and supports the agency’s efforts to extend the life of satellites while reducing space debris. Satellites that are no longer in use can break apart or collide with one another, creating debris clouds that pose risk to human spaceflight, science and robotic missions in Earth’s orbit, and missions to other planets in the solar system. Data from inspections like those planned during the SSPICY demonstration will play a critical role in understanding the nature of defunct satellites and advancing solutions for reuse or disposal.
      “We are excited to expand our partnership with NASA, building on our shared commitment to advancing in-space manufacturing and assembly capabilities,” said Trevor Bennett, co-founder of Starfish Space. “It’s an honor for Starfish to lead the first commercial debris inspection mission funded by NASA. We look forward to collaborating on this and future satellite servicing missions to enable a new paradigm for humanity in space.”
      The Otter spacecraft is expected to launch in late 2026 and will begin performing inspections in 2027.
      The SSPICY demonstration is funded and managed by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley. The award is enabled by NASA’s SBIR program, which is open to U.S. small businesses to develop an innovation or technology. These programs are part of NASA’s Space Technology Mission Directorate.
      Learn more at:
      https://www.nasa.gov/space-technology-mission-directorate
      Share
      Details
      Last Updated Sep 25, 2024 Related Terms
      Ames Research Center Small Business Innovation Research / Small Business Small Satellite Missions Small Spacecraft Technology Program Space Sustainability Space Technology Mission Directorate Explore More
      3 min read NASA’s Record-Breaking Laser Demo Completes Mission
      Article 5 hours ago 4 min read ­­Robotic Moving ‘Crew’ Preps for Work on Moon 
      Article 7 hours ago 4 min read NASA Expands Small Business, Industry Engagement Resources
      Article 2 days ago Keep Exploring Discover Related Topics
      About Ames
      Space Technology Mission Directorate
      Ames Research Center SBIR/STTR Program Office 
      NASA’s Space Sustainability Strategy
      View the full article
    • By NASA
      4 Min Read ­­Robotic Moving ‘Crew’ Preps for Work on Moon 
      The LANDO system works by using onboard sensors to scan encoded markers (similar to a QR code) on a payload, which will reveal critical information about its position and orientation relative to the LSMS. This information is used to calculate where the robotic arm exists in space and plan the motion path to pick up and move payloads. Credits: NASA/David C. Bowman As NASA moves forward with efforts to establish a long-term presence on the Moon as part of the Artemis campaign, safely moving cargo from landers to the lunar surface is a crucial capability.  
      Whether the cargo, also known as payloads, are small scientific experiments or large technology to build infrastructure, there won’t be a crew on the Moon to do all the work, which is where robots and new software come in. 
      A team at NASA’s Langley Research Center in Hampton, Virginia, spent the last couple of years infusing existing robotic hardware with a software system that makes the robot operate autonomously. Earlier this month, that team, led by researcher Dr. Julia Cline of NASA Langley’s Research Directorate, ran demonstrations of their system called LANDO (Lightweight Surface Manipulation System AutoNomy capabilities Development for surface Operations and construction). 
      LANDO prepares to move its payload to a safe spot on the simulated lunar surface.NASA/David C. Bowman The demos took place in an area set up to look like the Moon’s surface, complete with fake boulders and a model lunar lander. During the first demo, the team placed the payload, a small metal box, on a black pedestal. The robotic arm stretched over the scene, with its dangling hook poised to grasp the box.
      As the team huddled nearby around computers, sensors on the arm scanned the surrounding area, looking for the metal box, which was outfitted with encoded markers — similar to QR codes — that revealed critical information about its position and orientation relative to the arm. Using a graphic user interface, team member Amelia Scott also chose a location for LANDO to place the payload.
      During a series of slow, methodical movements, LANDO transports a payload from a pedestal to a simulated lunar surface.NASA/Angelique Herring After locating the metal box and computing a safe path to move it, the arm began a slow, deliberate movement toward its target, coming in at a precise angle that allowed the hook to select a capture point on the payload. Once engaged, the arm slowly lifted the payload from the pedestal, moved right, and gently lowered the payload to the simulated lunar surface. With the payload safely on the surface, the system carefully disengaged the hook from the capture point and returned to its home position. The entire process took a few minutes. Shortly after the first demo was complete, the team did it again, but with a small model rover.  
      “What we demonstrated was the repeatability of the system,moving multiple payloads to show that we’re consistently and safely able to get them from point A to point B,” said Cline. “We also demonstrated the Lightweight Surface Manipulation System hardware – the ability to control the system through space and plan a path around obstacles.” 
      The system’s successful performance during the September demonstration marks the end of this project, but the first step in developing a larger system to go to the Moon. 
      Now that the team has determined how the system should function, Cline believes the next natural step would be to develop and test an engineering design unit on one of the landers going to the Moon as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative. The team is actively looking for industry partners who want to commercialize the capability. 
      Through CLPS, NASA is working with commercial companies to deliver science and technology demonstrations to the Moon.  
      The work behind LANDO could be directly infused into much larger versions of a lightweight surface manipulation system.
      The LANDO team, back row, left to right: Dominic Bisio, Joshua Moser, Walter Waltz, Jacob Martin, Ryan Bowers, Brace White and Iok Wong. And kneeling, left to right: Amelia Scott, Matthew Vaughan, Julia Cline, Jessica Friz and Javier Puig-Navarro.NASA/Ryan Hill “The overall control system we’ve developed would apply to larger versions of the technology,” said Cline. “When you think about the payloads we’ll have to offload for on the Moon, like habitats and surface power systems, this is the kind of general-purpose tool that could be used for those tasks.” 
      The LANDO system was funded through the Early Career Initiative in NASA’s Space Technology Mission Directorate (STMD). Through STMD, NASA supports and develops transformative space technologies to enable future missions. As NASA embarks on its next era of exploration with the Artemis campaign, STMD is helping advance technologies, developing new systems, and testing capabilities at the Moon that will be critical for crewed missions to Mars. 
      Explore More
      4 min read NASA Expands Small Business, Industry Engagement Resources
      Article 2 days ago 4 min read NASA’s Hidden Figures Honored with Congressional Gold Medals
      Article 6 days ago 3 min read Measuring Moon Dust to Fight Air Pollution
      Article 1 week ago Share
      Details
      Last Updated Sep 25, 2024 EditorJoe AtkinsonLocationNASA Langley Research Center Related Terms
      Langley Research Center Space Technology Mission Directorate View the full article
    • By NASA
      Tiny satellites, also known as CubeSats, are pictured after being deployed into Earth orbit from a small satellite orbital deployer on the outside of the International Space Station’s Kibo laboratory module. The CubeSats were delivered aboard the Northrop Grumman Cygnus space freighter and will serve a variety of educational and research purposes for public and private organizations around the world.
      Image Credit: NASA/Tracy Dyson
      View the full article
  • Check out these Videos

×
×
  • Create New...