Members Can Post Anonymously On This Site
Where Do These Balls Of Light Come From
-
Similar Topics
-
By European Space Agency
The day began with an 85% chance that bad weather would cause a launch delay: it ended with ESA’s Hera mission successfully in space and en route to the Didymos binary asteroid system.
At 16:52 CEST (14:52 UTC) on 7 October 2024, Hera took to the skies aboard a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station in Florida, USA. After a smooth 76-minute ascent, the spacecraft separated from its launcher, and, a few minutes later, ESA’s ESOC mission operations centre in Germany assumed control of the spacecraft.
Here is what has happened since then.
View the full article
-
By NASA
9 min read
Launch Your Creativity with These Space Crafts!
In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!
Join us for a journey across the cosmos, starting right in your own pantry.
Stardust Slime
Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars.
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!
Instructions:
1 5 oz. bottle clear glue ½ tablespoon baking soda food coloring 1 tablespoon contact lens solution 1 tablespoon glitter Directions:
Pour the glue into a bowl
Mix in the baking soda
Add food coloring (we recommend blue, purple, black, or a combination).
Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.
Add glitter a teaspoon at a time, using as much or as little as you like!
Space Suckers
Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!
Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations.
Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!
Ingredients
2 cups sugar 2/3 cup light corn syrup 2/3 cup water gel food coloring flavor oil edible glitter dust sucker sticks sucker mold Directions
Prep the molds by adding sucker sticks.
Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.
Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.
Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).
Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.
Fizzy Planets
As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!
Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.
Ingredients
3 cups baking soda ¾ cup water food coloring ¼ cup vinegar Directions
Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.
Repeat step one two more times using different colors.
Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.
Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!
Marshmallow Constellations
As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!
Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.
Supplies
toothpicks or mini pretzel sticks mini marshmallows constellation printables scissors Directions
Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.
Black Hole Bath Bombs
Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.
Ingredients
1 cup baking soda ½ cup citric acid ½ cup cornstarch 2 tablespoons coconut oil black food coloring optional: 2 teaspoons essential oil for scent optional: ½ cup Epsom salt Directions
Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.
In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).
Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.
Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!
Galaxy in a Jar
Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times!
Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.
Ingredients
hot water glitter glue glitter super glue (optional) Directions
Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.
Add at least ¼ cup of glitter glue in colors of your choosing.
Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.
Optional: Super glue the lid to the jar.
Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!
NOTE: Closely monitor children to ensure the jar doesn’t break.
Pinwheel Galaxy Pinwheels
As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)
But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion.
Supplies
Pinwheel Galaxy printout pipe cleaner or chopsticks scissors popsicle stick single hole puncher Directions
Cut out the hexagonal shape for your galaxy pinwheel.
Make cuts down the white lines.
Punch holes in the white dots: six around the edges and one in the center.
Turn the paper so it’s face-down.
Thread a pipe cleaner through the center hole.
Going around the circle, fold each flap so the pipe cleaner goes through the hole.
Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.
Universe Dough
We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!
Ingredients 1 cup flour ½ cup salt 1 tablespoon vegetable oil ½ cup hot water food coloring glitter Directions
Mix flour and salt in a bowl.
Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.
Add as much glitter as you like and knead it into the dough for several minutes.
Add water or flour as needed to adjust the consistency.
Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.
Share
Details
Last Updated Sep 27, 2024 Related Terms
For Kids and Students Nancy Grace Roman Space Telescope NASA STEM Projects View the full article
-
By USH
In the remote wilderness of the Shoria Mountains in southern Siberia, a long-hidden secret has remained untouched for millennia. Far from the reach of modern civilization, a discovery was made that would challenge our understanding of ancient human history.
In 2013, a team of 19 researchers, led by Georgy Sidorov, embarked on an expedition to explore this mysterious region. Their destination was Gora Shoria, a mountain towering 3,600 feet above sea level in a remote part of Russia. Intrigued by reports of strange megalithic structures, the team ventured into this secluded terrain.
What they found was extraordinary: an immense super-megalith dating back roughly 100,000 years that defied conventional history. These massive stone blocks, later known as the Gornaya Shoria Megaliths, appeared to be made of granite, featuring flat surfaces and precise right angles. The most astounding detail was the weight of the stones, exceeding 3,000 tons—making them the largest megaliths ever discovered.
The arrangement of these granite blocks suggested a deliberate design, far beyond what could be explained by natural formations. The blocks were carefully stacked, reaching a height of approximately 140 feet. This raised profound questions: how were such massive stones carved, transported, and assembled in this remote and rugged landscape?
Some researchers have speculated about the existence of a pre-flood civilization, a sophisticated society wiped out by a cataclysmic event.
Also a deep, narrow vertical shaft was uncovered. The shaft, lined with parallel stone slabs, appeared to be human-made.
The walls of the shaft were straight and polished, descending 40 meters (around 130 feet) before opening into a vast underground hall, 36 meters (around 118 feet) high. These walls were constructed from large megalithic blocks, perfectly fitted with minimal gaps. Some of the stones resembled columns, reinforcing the idea of deliberate design. The full explored length of the shaft spanned over 100 meters (approximately 350 feet).
The precision and scale of this structure left no doubt that it was an artificial creation of immense proportions. The polished walls and massive blocks bore a striking resemblance to the shafts within the Great Pyramid of Khufu in Egypt, suggesting a level of architectural sophistication that defies conventional explanations.
Speculation abounds regarding the shaft’s original purpose. Some believe it served an advanced technological function or was part of a larger, undiscovered structure. The exploration team took over an hour to reach the bottom of the shaft, which required significant climbing expertise and endurance. It is believed that additional chambers and channels, still unexplored, may lie even deeper underground.
How could these gigantic 200-ton stone blocks have been assembled with such accuracy, deep underground? What kind of technology was used to construct the shaft and underground chamber?
Some researchers have speculated that it may have been part of an ancient factory, a seismological research device, or even an energy generator. Others believe it was the underground portion of a long-lost pyramid that once stood on the surface of the mountain.
Despite differing theories, we may wonder what ancient forces or lost civilizations left their mark on this remote corner of the world?
View the full article
-
By USH
The Colares UFO incidents refer to a series of unusual sightings and encounters that took place in 1977 on the Brazilian island of Colares. During this period, numerous residents from the Amazon River community of Colares reported being attacked by UFOs.
These mysterious objects allegedly descended from the sky, and in some cases, emerged from the water, emitting intense beams of light. The beams caused physical harm, including burn marks, puncture wounds, fatigue, and memory loss, affecting as many as 2,000 people.
In response to the alarming situation, the Brazilian Air Force initiated a thorough investigation. Years later, their findings were made public, revealing details of this bizarre chapter in UFO history.
Weaponized hosts Jeremy and George speak with Thiago Ticchetti, Brazil's leading UFO investigator and author, to discuss the Colares case and the once-classified military files.
According to Thiago, the Brazilian military captured remarkably clear film footage and photographs of the UFOs. However, he claims that this evidence was sent to the U.S. and has never been released to the public.
In this episode, they also explores various conspiracy theories and recent debunking efforts surrounding the topic of unidentified aerial phenomena (UAP).
The discussion on the Colares UFO incidents begins at the 37-minute mark in the video.
View the full article
-
By NASA
2 min read
Hubble Reaches a Lonely Light in the Dark
NASA, ESA, C. Gallart (Instituto de Astrofisica de Canarias), A. del Pino Molina (Centro de Estudios de Fisica del Cosmos de Aragon), and R. van der Marel (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) A splatter of stars glows faintly at almost 3 million light-years away in this new image from NASA’s Hubble Space Telescope. Known as the Tucana Dwarf for lying in the constellation Tucana, this dwarf galaxy contains a loose bundle of aging stars at the far edge of the Local Group, an aggregation of galaxies including our Milky Way, bound together by gravity. The Tucana Dwarf was discovered in 1990 by R.J. Lavery, the same year Hubble launched.
What makes the Tucana Dwarf distinct from other dwarf galaxies comes in two parts: its classification, and its isolation. As a dwarf spheroidal galaxy, it is much smaller and less luminous than most other dwarf galaxies. Dust is sparse and the stellar population skews towards the older range, giving them a dimmer look. Additionally, the Tucana Dwarf lies about 3.6 million light-years from the Local Group’s center of mass, far from the Milky Way and other galaxies. It is only one of two dwarf spheroidal galaxies in the Local Group to be this remote, making astronomers theorize that a close encounter with a larger galactic neighbor called Andromeda slingshotted it into the distance about 11 billion years ago.
Having such pristine properties enables scientists to use the Tucana Dwarf as a cosmic fossil. Dwarf galaxies could be the early ingredients for larger galaxies, and with older stars residing in such an isolated environment, analyzing them can help trace galaxy formation back to the dawn of time. For that reason, Hubble reached far across the Local Group using the capabilities of the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 to meet this distant, lonely galaxy. Examining its structure, composition, and star formation history sheds light on the epoch of reionization, when the first stars and galaxies arose from the dark billions of years ago.
Download Image
Explore More
Hubble’s Galaxies
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Share
Details
Last Updated Aug 23, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science
Hubble’s Galaxies
Stars
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.