Members Can Post Anonymously On This Site
Where Do These Balls Of Light Come From
-
Similar Topics
-
By NASA
NASA, ESA, and M. Wong (University of California – Berkeley); Processing: Gladys Kober (NASA/Catholic University of America) This NASA Hubble Space Telescope image shows the planet Jupiter in a color composite of ultraviolet wavelengths. Released on Nov. 3, 2023, in honor of Jupiter reaching opposition, which occurs when the planet and the Sun are in opposite sides of the sky, this view of the gas giant planet includes the iconic, massive storm called the “Great Red Spot.” Though the storm appears red to the human eye, in this ultraviolet image it appears darker because high altitude haze particles absorb light at these wavelengths. The reddish, wavy polar hazes are absorbing slightly less of this light due to differences in either particle size, composition, or altitude.
Learn more about Hubble and how this type of data can help us learn more about our universe.
Image credit: NASA, ESA, and M. Wong (University of California – Berkeley); Processing: Gladys Kober (NASA/Catholic University of America)
View the full article
-
By European Space Agency
On 1 December 2024, BepiColombo flew past Mercury for the fifth time. During this flyby, BepiColombo became the first spacecraft ever to observe Mercury in mid-infrared light. The new images reveal variations in temperature and composition across the planet's cratered surface.
View the full article
-
By USH
A rare and intriguing phenomenon has been observed in China. On the night of October 27th, Chinese astrophotographer Shengyu Li set up his camera to capture star trails over Mount Xiannairi in Sichuan Province. To his surprise, he recorded mysterious blue flashes accompanying an avalanche.
The exact cause of these "blue lights" remains unclear, sparking various theories. Some speculate they could stem from geomagnetic activity, interactions of cosmic rays in the upper atmosphere, or rare atmospheric phenomena like blue jets or elves. However, Li offers another explanation: the flashes might result from triboluminescence—light produced by friction during ice fragmentation.
Triboluminescence occurs when certain materials emit light as they are fractured, scratched, or rubbed. This phenomenon happens due to the breaking of chemical bonds or the sudden separation of surfaces, which generates electrical charges. These charges can ionize the surrounding air or excite the material itself, creating visible light.
The hypothesis suggests that this event could be an example of triboluminescence. However, it also raises the intriguing possibility of a connection to UFO phenomena, such as orbs or other unexplained lights that have been observed around the world over the years.
Hypothesis: The sighting depicts what appears to be a blue light descending onto a snowbank, following the avalanche as it moves downward, and then vanishing before seemingly ascending again.
Did the avalanche trigger the blue light, or did the blue light crash into the snow, causing the avalanche?
Whether this phenomenon is a rare case of triboluminescence, potentially the first instance of it being captured on camera or something linked to unexplained UFO activity, the recording of this light remains a unique and fascinating occurrence. View the full article
-
By European Space Agency
The day began with an 85% chance that bad weather would cause a launch delay: it ended with ESA’s Hera mission successfully in space and en route to the Didymos binary asteroid system.
At 16:52 CEST (14:52 UTC) on 7 October 2024, Hera took to the skies aboard a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station in Florida, USA. After a smooth 76-minute ascent, the spacecraft separated from its launcher, and, a few minutes later, ESA’s ESOC mission operations centre in Germany assumed control of the spacecraft.
Here is what has happened since then.
View the full article
-
By NASA
9 min read
Launch Your Creativity with These Space Crafts!
In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!
Join us for a journey across the cosmos, starting right in your own pantry.
Stardust Slime
Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars.
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!
Instructions:
1 5 oz. bottle clear glue ½ tablespoon baking soda food coloring 1 tablespoon contact lens solution 1 tablespoon glitter Directions:
Pour the glue into a bowl
Mix in the baking soda
Add food coloring (we recommend blue, purple, black, or a combination).
Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.
Add glitter a teaspoon at a time, using as much or as little as you like!
Space Suckers
Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!
Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations.
Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!
Ingredients
2 cups sugar 2/3 cup light corn syrup 2/3 cup water gel food coloring flavor oil edible glitter dust sucker sticks sucker mold Directions
Prep the molds by adding sucker sticks.
Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.
Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.
Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).
Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.
Fizzy Planets
As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!
Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.
Ingredients
3 cups baking soda ¾ cup water food coloring ¼ cup vinegar Directions
Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.
Repeat step one two more times using different colors.
Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.
Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!
Marshmallow Constellations
As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!
Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.
Supplies
toothpicks or mini pretzel sticks mini marshmallows constellation printables scissors Directions
Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.
Black Hole Bath Bombs
Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.
Ingredients
1 cup baking soda ½ cup citric acid ½ cup cornstarch 2 tablespoons coconut oil black food coloring optional: 2 teaspoons essential oil for scent optional: ½ cup Epsom salt Directions
Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.
In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).
Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.
Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!
Galaxy in a Jar
Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times!
Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.
Ingredients
hot water glitter glue glitter super glue (optional) Directions
Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.
Add at least ¼ cup of glitter glue in colors of your choosing.
Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.
Optional: Super glue the lid to the jar.
Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!
NOTE: Closely monitor children to ensure the jar doesn’t break.
Pinwheel Galaxy Pinwheels
As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)
But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion.
Supplies
Pinwheel Galaxy printout pipe cleaner or chopsticks scissors popsicle stick single hole puncher Directions
Cut out the hexagonal shape for your galaxy pinwheel.
Make cuts down the white lines.
Punch holes in the white dots: six around the edges and one in the center.
Turn the paper so it’s face-down.
Thread a pipe cleaner through the center hole.
Going around the circle, fold each flap so the pipe cleaner goes through the hole.
Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.
Universe Dough
We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!
Ingredients 1 cup flour ½ cup salt 1 tablespoon vegetable oil ½ cup hot water food coloring glitter Directions
Mix flour and salt in a bowl.
Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.
Add as much glitter as you like and knead it into the dough for several minutes.
Add water or flour as needed to adjust the consistency.
Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.
Share
Details
Last Updated Sep 27, 2024 Related Terms
For Kids and Students Nancy Grace Roman Space Telescope NASA STEM Projects View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.