Members Can Post Anonymously On This Site
The Lost Pacific Continent of Advanced Human Beings... Did It Really Exist?
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This artist’s concept shows astronauts working on the Moon alongside different technology systems. The Data & Reasoning Fabric technology could help these systems operate in harmony, supporting the astronauts and ground control on Earth.Credit: NASA Imagine your car is in conversation with other traffic and road signals as you travel. Those conversations help your car anticipate actions you can’t see: the sudden slowing of a truck as it begins to turn ahead of you, or an obscured traffic signal turning red. Meanwhile, this system has plotted a course that will drive you toward a station to recharge or refuel, while a conversation with a weather service prepares your windshield wipers and brakes for the rain ahead.
This trip requires a lot of communication among systems from companies, government agencies, and organizations. How might these different entities – each with their own proprietary technology – share data safely in real time to make your trip safe, efficient, and enjoyable?
Technologists at NASA’s Ames Research Center in California’s Silicon Valley created a framework called Data & Reasoning Fabric (DRF), a set of software infrastructure, tools, protocols, governance, and policies that allow safe, secure data sharing and logical prediction-making across different operators and machines. Originally developed with a focus on providing autonomous aviation drones with decision-making capabilities, DRF is now being explored for other applications.
This means that one day, DRF-informed technology could allow your car to receive traffic data safely and securely from nearby stoplights and share data with other vehicles on the road. In this scenario, DRF is the choreographer of a complex dance of moving objects, ensuring each moves seamlessly in relation to one another towards a shared goal. The system is designed to create an integrated environment, combining data from systems that would otherwise be unable to interact with each other.
“DRF is built to be used behind the scenes,” said David Alfano, chief of the Intelligent Systems Division at Ames. “Companies are developing autonomous technology, but their systems aren’t designed to work with technology from competitors. The DRF technology bridges that gap, organizing these systems to work together in harmony.”
Traffic enhancements are just one use case for this innovative system. The technology could enhance how we use autonomy to support human needs on Earth, in the air, and even on the Moon.
Supporting Complex Logistics
To illustrate the technology’s impact, the DRF team worked with the city of Phoenix on an aviation solution to improve transportation of critical medical supplies from urban areas out to rural communities with limited access to these resources. An autonomous system identified where supplies were needed and directed a drone to pick up and transport supplies quickly and safely.
“All the pieces need to come together, which takes a lot of effort. The DRF technology provides a framework where suppliers, medical centers, and drone operators can work together efficiently,” said Moustafa Abdelbaky, senior computer scientist at Ames. “The goal isn’t to remove human involvement, but help humans achieve more.”
The DRF technology is part of a larger effort at Ames to develop concepts that enable autonomous operations while integrating them into the public and commercial sector to create safer, efficient environments.
“At NASA, we’re always learning something. There’s a silver lining when one project ends, you can identify a new lesson learned, a new application, or a new economic opportunity to continue and scale that work,” said Supreet Kaur, lead systems engineer at Ames. “And because we leverage all of the knowledge we’ve gained through these experiments, we are able to make future research more robust.”
Choreographed Autonomy
Industries like modern mining involve a variety of autonomous and advanced vehicles and machinery, but these systems face the challenge of communicating sufficiently to operate in the same area. The DRF technology’s “choreography” might help them work together, improving efficiency. Researchers met with a commercial mining company to learn what issues they struggle with when using autonomous equipment to identify where DRF might provide future solutions.
“If an autonomous drill is developed by one company, but the haul trucks are developed by another, those two machines are dancing to two different sets of music. Right now, they need to be kept apart manually for safety,” said Johnathan Stock, chief scientist for innovation at the Ames Intelligent Systems Division. “The DRF technology can harmonize their autonomous work so these mining companies can use autonomy across the board to create a safer, more effective enterprise.”
Further testing of DRF on equipment like those used in mines could be done at the NASA Ames Roverscape, a surface that includes obstacles such as slopes and rocks, where DRF’s choreography could be put to the test.
Stock also envisions DRF improving operations on the Moon. Autonomous vehicles could transport materials, drill, and excavate, while launch vehicles come and go. These operations will likely include systems from different companies or industries and could be choreographed by DRF.
As autonomous systems and technologies increase across markets, on Earth, in orbit, and on the Moon, DRF researchers are ready to step on the dance floor to make sure everything runs smoothly.
“When everyone’s dancing to the same tune, things run seamlessly, and more is possible.”
Share
Details
Last Updated Mar 20, 2025 Related Terms
General Explore More
3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools
Article 2 days ago 5 min read Risk of Venous Thromboembolism During Spaceflight
Article 6 days ago 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
Article 1 week ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Aeronautics Research Mission Directorate
Intelligent Systems Division
Space Technology Mission Directorate
View the full article
-
By NASA
Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 6 Min Read NASA Uses Advanced Radar to Track Groundwater in California
The Friant-Kern Canal supports water management in California’s San Joaquin Valley. A new airborne campaign is using NASA radar technology to understand how snowmelt replenishes groundwater in the area. Credits:
Bureau of Reclamation Where California’s towering Sierra Nevada surrender to the sprawling San Joaquin Valley, a high-stakes detective story is unfolding. The culprit isn’t a person but a process: the mysterious journey of snowmelt as it travels underground to replenish depleted groundwater reserves.
The investigator is a NASA jet equipped with radar technology so sensitive it can detect ground movements thinner than a nickel. The work could unlock solutions to one of the American West’s most pressing water challenges — preventing groundwater supplies from running dry.
“NASA’s technology has the potential to give us unprecedented precision in measuring where snowmelt is recharging groundwater,” said Erin Urquhart, program manager for NASA’s Earth Action Water Resources program at NASA Headquarters in Washington. “This information is vital for farmers, water managers, and policymakers trying to make the best possible decisions to protect water supplies for agriculture and communities.”
Tracking Water Beneath the Surface
In late February, a NASA aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) conducted the first of six flights planned for this year, passing over a roughly 25-mile stretch of the Tulare Basin in the San Joaquin Valley, where foothills meet farmland. It’s a zone experts think holds a key to maintaining water supplies for one of America’s most productive agricultural regions.
Much of the San Joaquin Valley’s groundwater comes from the melting of Sierra Nevada snow. “For generations, we’ve been managing water in California without truly knowing where that meltwater seeps underground and replenishes groundwater,” said Stanford University geophysicist and professor Rosemary Knight, who is leading the research.
This image from the MODIS instrument on NASA’s Terra satellite, captured on March 8, 2025, shows the Tulare Basin area in Southern California, where foothills meet farmlands. The region is a crucial area for groundwater recharge efforts aimed at making the most of the state’s water resources. Credits: NASA Earth Observatory image by Michala Garrison, using MODIS data from NASA EOSDIS LANCE and GIBS/Worldview. The process is largely invisible — moisture filtering through rock and sediment, and vanishing beneath orchards and fields. But as the liquid moves downhill, it follows a pattern. Water flows into rivers and streams, some of it eventually seeping underground at the valley’s edge or as the waterways spread into the valley. As the water moves through the ground, it can create slight pressure that in turn pushes the surface upward. The movement is imperceptible to the human eye, but NASA’s advanced radar technology can detect it.
“Synthetic aperture radar doesn’t directly see water,” explained Yunling Lou, who leads the UAVSAR program at NASA’s Jet Propulsion Laboratory in Southern California. “We’re measuring changes in surface elevation — smaller than a centimeter — that tell us where the water is.”
These surface bulges create what Knight calls an “InSAR recharge signature.” By tracking how these surface bulges migrate from the mountains into the valley, the team hopes to pinpoint where groundwater replenishment occurs and, ultimately, quantify the amount of water naturally recharging the system.
Previous research using satellite-based InSAR (Interferometric Synthetic Aperture Radar) has shown that land in the San Joaquin Valley uplifts and subsides with the seasons, as the groundwater is replenished by Sierra snowmelt. But the satellite radar couldn’t uniquely identify the recharge paths. Knight’s team combined the satellite data with images of underground sediments, acquired using an airborne electromagnetic system, and was able to map the major hidden subsurface water pathways responsible for aquifer recharge.
NASA’s airborne UAVSAR system will provide even more detailed data, potentially allowing researchers to have a clearer view of where and how fast water is soaking back into the ground and recharging the depleted aquifers.
In 2025, NASA’s UAVSAR system on a Gulfstream-III jet (shown over a desert landscape) is conducting six planned advanced radar surveys to map how and where groundwater is recharging parts of California’s southern San Joaquin Valley. Credits: NASA Supporting Farmers and Communities
California’s Central Valley produces over a third of America’s vegetables and two-thirds of its fruits and nuts. The southern portion of this agricultural powerhouse is the San Joaquin Valley, where most farming operations rely heavily on groundwater, especially during drought years.
Water managers have occasionally been forced to impose restrictions on groundwater pumping as aquifer levels drop. Some farmers now drill increasingly deeper wells, driving up costs and depleting reserves.
“Knowing where recharge is happening is vital for smart water management,” said Aaron Fukuda, general manager of the Tulare Irrigation District, a water management agency in Tulare County that oversees irrigation and groundwater recharge projects.
“In dry years, when we get limited opportunities, we can direct flood releases to areas that recharge efficiently, avoiding places where water would just evaporate or take too long to soak in,” Fukuda said. “In wetter years, like 2023, it’s even more crucial — we need to move water into the ground as quickly as possible to prevent flooding and maximize the amount absorbed.”
NASA’s Expanding Role in Water Monitoring
NASA’s ongoing work to monitor and manage Earth’s water combines a range of cutting-edge technologies that complement one another, each contributing unique insights into the challenges of groundwater management.
The upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission, a joint project between NASA and the Indian Space Research Organisation (ISRO) set to launch in coming months, will provide global-scale radar data to track land and ice surface changes — including signatures of groundwater movement — every 12 days.
The NISAR satellite (shown in this artist’s concept) has a large radar antenna designed to monitor Earth’s land and ice changes with unprecedented detail. Credits: NASA/JPL-Caltech In parallel, the GRACE satellites — operated by the German Aerospace Center, German Research Centre for Geosciences, and NASA — have transformed global groundwater monitoring by detecting tiny variations in Earth’s gravity, offering a broad view of monthly water storage changes across large regions.
The Gravity Recovery and Climate Experiment and Follow-On (GRACE and GRACE-FO) missions have helped expose major declines in aquifers, including in California’s Central Valley. But their coarser resolution calls for complementary tools that can, for example, pinpoint recharge hotspots with greater precision.
Together, these technologies form a powerful suite of tools that bridge the gap between regional-scale monitoring and localized water management. NASA’s Western Water Applications Office (WWAO) also plays a key role in ensuring that this wealth of data is accessible to water managers and others, offering platforms like the Visualization of In-situ and Remotely-Sensed Groundwater Observation (VIRGO) dashboard to facilitate informed decision-making.
“Airborne campaigns like this one in the San Joaquin test how our technology can deliver tangible benefits to American communities,” said Stephanie Granger, WWAO’s director at NASA’s Jet Propulsion Laboratory. “We partner with local water managers to evaluate tools that have the potential to strengthen water supplies across the Western United States.”
By Emily DeMarco
NASA Headquarters
About the Author
Emily DeMarco
Share
Details
Last Updated Mar 20, 2025 Related Terms
Earth Droughts Floods Water on Earth Explore More
6 min read NASA Data Supports Everglades Restoration
Florida’s coastal wetlands face new threats as sea levels and temperatures climb. NASA’s BlueFlux Campaign…
Article
6 days ago
8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
Article
7 days ago
5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
View the full article
-
By NASA
Center Director Dr. Jimmy Kenyon gives an overview of NASA Glenn Research Center’s areas of expertise and how it supports the agency’s missions and programs. Credit: NASA/Susan Valerian NASA Glenn Research Center’s Director Dr. Jimmy Kenyon and Chief Counsel Callista Puchmeyer participated in a local symposium that addressed the operational and legal challenges of human spaceflight. The one-day conference was held at the Cleveland State University (CSU) College of Law on Feb.13.
Kenyon gave a keynote that provided an overview of NASA Glenn’s areas of expertise and how the center supports the agency’s missions and programs. He also talked about the role of growing commercial partnerships at NASA.
Panelists, left to right: Col. (Ret.) Joseph Zeis, senior advisor for Aerospace and Defense, Office of the Governor of Ohio; Callista Puchmeyer, chief counsel, NASA’s Glenn Research Center; and Jon. P. Yormick, international business and trade attorney, Yormick Law, answer questions on operational and legal challenges of human spaceflight at a Cleveland State University College of Law symposium. Credit: NASA/Susan Valerian Puchmeyer, a graduate of CSU’s College of Law and recent inductee into its Hall of Fame, participated in a panel about Northeast Ohio’s aerospace industry and the legal aspects of commercial partnerships.
Additionally, human spaceflight experts from academia, law, and science spoke throughout the day on topics ranging from the health and training of astronauts to the special law of space stations. Romanian astronaut Dumitru-Dorin Prunariu joined remotely to provide a personal perspective.
Return to Newsletter Explore More
2 min read NASA Releases its Spinoff 2025 Publication
Article 4 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 22 hours ago View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Risks Concept Risk is inherent in human spaceflight. However, specific risks can and should be understood, managed, and mitigated to reduce threats posed to astronauts. Risk management in the context of human spaceflight can be viewed as a trade-based system. The relevant evidence in life sciences, medicine, and engineering is tracked and evaluated to identify ways to minimize overall risk to the astronauts and to ensure mission success. The Human System Risk Board (HSRB) manages the process by which scientific evidence is utilized to establish and reassess the postures of the various risks to the Human System during all of the various types of existing or anticipated crewed missions. The HSRB operates as part of the Health and Medical Technical Authority of the Office of the Chief Health and Medical Officer of NASA via the JSC Chief Medical Officer.
The HSRB approaches to human system risks is analogous to the approach the engineering profession takes with its Failure Mode and Effects Analysis in that a process is utilized to identify and address potential problems, or failures to reduce their likelihood and severity. In the context of risks to the human system, the HSRB considers eight missions which different in their destinations and durations (known as Design Reference Missions [DRM]) to further refine the context of the risks. With each DRM a likelihood and consequence are assigned to each risk which is adjusted scientific evidence is accumulated and understanding of the risk is enhanced, and mitigations become available or are advanced.
Human System Risks This framework enables the principles of Continuous Risk Management and Risk Informed Decision Making (RIDM) to be applied in an ongoing fashion to the challenges posed by Human System Risks. Using this framework consistently across the 29 risks allows management to see where risks need additional research or technology development to be mitigated or monitored and for the identification of new risks and concerns. Further information on the implementation of the risk management process can be found in the following documents:
Human System Risk Management Plan – JSC-66705 NASA Health and Medical Technical Authority (HMTA) Implementation – NPR 7120.11A NASA Space Flight Program and Project Management Requirements – NPR 7120.5 Human System Risk Board Management Office
The HSRB Risk Management Office governs the execution of the Human System Risk management process in support of the HSRB. It is led by the HSRB Chair, who is also referred to as the Risk Manager.
Risk Custodian Teams
Along with the Human System Risk Manager, a team of risk custodians (a researcher, an operational researcher or physician, and an epidemiologist, who each have specific expertise) works together to understand and synthesize scientific and operational evidence in the context of spaceflight, identify and evaluate metrics for each risk in order to communicate the risk posture to the agency.
Directed Acyclic Graphs
Summary
The HSRB uses Directed Acyclic Graphs (DAG), a type of causal diagramming, as visual tools to create a shared understanding of the risks, improve communication among those stakeholders, and enable the creation of a composite risk network that is vetted by members of the NASA community and configuration managed (Antonsen et al., NASA/TM– 20220006812). The knowledge captured is the Human Health and Performance community’s knowledge about the causal flow of a human system risk, and the relationships that exist between the contributing factors to that risk.
DAGs are:
Intended to improve communication between: Managers and subject matter experts who need to discuss human system risks Subject matter experts in different disciplines where human system risks interact with one another in a potentially cumulative fashion Visual representations of known or suspected relationships Directed – the relationship flows in one direction between any two nodes Acyclic – cycles in the graph are not allowed Example of a Directed Acyclic Graph. This is a simplified illustration of how and the individual, the crew, and the system contribute to the likelihood of successful task performance in a mission. Individual readiness is affected by many of the health and performance-oriented risks followed by the HSRB, but the readiness of any individual crew is complemented by the team and the system that the crew works within. Failures of task performance may lead to loss of mission objectives if severe.NASA View Larger (Example of a Directed Acyclic Graph) Image
Details
At NASA, the Human System Risks have historically been conceptualized as deriving from five Hazards present in the spaceflight environment. These are: altered gravity, isolation and confinement, radiation, a hostile closed environment, and distance from Earth. These Hazards are aspects of the spaceflight environment that are encountered when someone is launched into space and therefore are the starting point for causal diagramming of spaceflight-related risk issues for the HSRB.
These Hazards are often interpreted in relation to physiologic changes that occur in humans as a result of the exposure; however, interaction between human crew (behavioral health and performance), which may be degraded due to the spaceflight environment – and the vehicle and mission systems that the crew must operate – can also be influenced by these Hazards.
Each Human System Risk DAG is intended to show the causal flow of risk from Hazards to Mission Level Outcomes. As such, the structure of each DAG starts with at least one Hazard and ends with at least one of the pre-defined Mission Level Outcomes. In between are the nodes and edges of the causal flow diagrams that are relevant to the Risk under consideration. These are called ‘contributing factors’ in the HSRB terminology, and include countermeasures, medical conditions, and other Human System Risks. A graph data structure is composed of a set of vertices (nodes), and a set of edges (links). Each edge represents a relationship between two nodes. There can be two types of relationships between nodes: directed and undirected. For example, if an edge exists between two nodes A and B and the edge is undirected, it is represented as A–B, (no arrow). If the edge were directed, for example from A to B, then this is represented with an arrow (A->B). Each directed arrow connecting one node to another on a DAG indicates a claim of causality. A directed graph can potentially contain a cycle, meaning that, from a specific node, there exists a path that would eventually return to that node. A directed graph that has no cycles is known as acyclic. Thus, a graph with directed links and no cycles is a DAG. DAGs are a type of network diagram that represent causality in a visual format.
DAGs are updated with the regular Human System Risk updates generally every 1-2 years. Approved DAGs can be found in the NASA/TP 20220015709 below or broken down under each Human System Risk.
Documents
Directed Acyclic Graph Guidance Documentation – NASA/TM 20220006812 Directed Acyclic Graphs: A Tool for Understanding the NASA Human Spaceflight System Risks – NASA/TP 20220015709 Publications
npj Microgravity – Causal diagramming for assessing human
system risk in spaceflight
Apr 22, 2024
PDF (3.09 MB)
npj Microgravity –
Levels of evidence for human system risk
evaluation
Apr 22, 2024
PDF (2.47 MB)
npj Microgravity –
Updates to the NASA human system risk management process
for space exploration
Apr 22, 2024
PDF (2.24 MB)
Points of Contact
Mary Van Baalen
Dan Buckland
Bob Scully
Kim Lowe
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Concern of Venous Thromboembolism
Article 31 mins ago 1 min read Risk of Acute and Chronic Carbon Dioxide Exposure
Article 30 mins ago 1 min read Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders
Article 30 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
By Space Force
The DoD released guidance for DoD civilian employees on OPM's "What Did You Do Last Week" email.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.