Jump to content

The Lost Pacific Continent of Advanced Human Beings... Did It Really Exist?


Recommended Posts

Posted

According to Churchward, the lost Pacific continent of Mu "extended from somewhere north of Hawaii to the south as far as the Fijis and Easter Island." 


lost-pacific-continent-aliens.png

He claimed Mu was the site of the Garden of Eden and the home of 64,000,000 inhabitants known as the Naacals.

Its civilization, which flourished 50,000 years before Churchward's day, was technologically more advanced than his own, and the ancient civilizations of India, Babylon, Persia, Egypt and the Mayas were merely the decayed remnants of its colonies. 

Could this strange land and advanced human's have really existed? 

01:15​ Colonel James Churchward 
04:22​ Lemuria and Australia

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      When Michael Ciancone joined NASA in 1983, he could hardly imagine what his 40-plus-year career would entail. From honoring and preserving spaceflight history to advancing safety standards, he has undoubtedly woven his knowledge and experience into NASA’s history as well as its future.  
      Ciancone currently serves as the Orion Program safety lead, overseeing the Office of Safety and Mission Assurance’s effort to ensure the safety of the Orion crew, vehicle, and associated hardware. In his role, he manages safety reviews of all flight hardware, with a current focus on Artemis II. His everyday success is backed by decades of learning and global collaboration within the areas of human spaceflight safety and history.  
      Michael Ciancone with Space Shuttle Atlantis at the launch gantry at NASA’s Kennedy Space Center in Florida in 2009. Image courtesy of Michael Ciancone  In 1997, Ciancone transferred from NASA’s Glenn Research Center in Cleveland to Johnson Space Center in Houston to serve as the executive officer for the Shuttle/International Space Station Payload Safety Review Panel, as well as group lead for Payload Safety. To better understand the scope and nature of his new role, Ciancone sought opportunities to engage with other safety professionals at conferences and symposia. At the suggestion of his manager, Ciancone instead organized a conference on spaceflight safety for payloads at Johnson, creating a forum for colleagues from the international spaceflight community.  
      These efforts were the catalyst for the formation of the International Association for the Advancement of Spaceflight Safety (IAASS), an organization founded by Ciancone and Skip Larsen of Johnson along with Alex Soons and Tommaso Sgobba of the European Space Agency. The IAASS is committed to furthering international cooperation and scientific advancements in space system safety and is recognized as the pre-eminent international forum for spaceflight and safety professionals. The organization is responsible for hosting an annual conference, conducting specialized safety training, and publishing seminal books on the aspects of spaceflight safety. 
      Throughout his tenure, Ciancone has worked closely with colleagues from around the world and he emphasizes that human spaceflight is a global endeavor made possible through respect and collaboration. “[In human spaceflight] there are different and equally valid approaches for achieving a common goal. Successful partnership requires an understanding and respect for the experiences and history of international partners,” he said.  
      Michael Ciancone (far left) pictured with Spaceflight Safety team members from NASA, the European Space Agency (ESA), and Airbus during a joint NASA/ESA safety review of the European Service Module (ESM) of the Orion Program at the Airbus facility in Bremen, Germany. Image courtesy of Michael Ciancone In addition to his dedication to spaceflight safety, Ciancone is active in the field of spaceflight history. He serves as the chair of the History Committee of the American Astronautical Society and, as a member of the International Academy of Astronautics, he also serves on the History Committee. Working in this community has made Ciancone more keenly aware of dreams of spaceflight as viewed from a historical perspective and guides his daily work at NASA. 
      Michael Ciancone (left) with Giovanni Caprara, science editor for the Corriere della Sera and co-author of “Early Italian Contributions to Astronautics: From the First Visionary to Construction of the first Italian Liquid Propellant Rocket” during the 75th International Astronautical Congress in Milan, Italy. Image courtesy of Michael Ciancone Beyond his technical achievements, Ciancone has also found creative ways to spice up the spaceflight community. While at Glenn Research Center, he co-founded the NASA Hot Pepper Club—a forum for employees who share a passion for cultivating and consuming hot peppers and pepper products. The club served as a unique space for camaraderie and connection, adding flavor to NASA life.  
      Ciancone’s immersion in spaceflight history and spaceflight safety has shaped his unique and valuable perspective. In addition to encouraging others to embrace new challenges and opportunities, Ciancone paraphrases Albert Einstein to advise the Artemis Generation to “learn from the past, live in the moment, and dream of the future.” This mentality has enabled him to combine his interest in spaceflight history with his work on Orion over the past 15 years, laying the groundwork for what he refers to as “future history.”  
      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA has announced the winners of it’s 31st Human Exploration Rover Challenge . The annual engineering competition – one of the agency’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. NASA NASA has announced the winning student teams in the 2025 Human Exploration Rover Challenge. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. In the human-powered division, Parish Episcopal School in Dallas, Texas, earned first place in the high school division, and the Campbell University in Buies Creek, North Carolina, captured the college and university title. In the remote-control division, Bright Foundation in Surrey, British Columbia, Canada, earned first place in the middle and high school division, and the Instituto Tecnologico de Santa Domingo in the Dominican Republic, captured the college and university title.
      The annual engineering competition – one of NASA’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. The complete list of 2025 award winners is provided below:
      Human-Powered High School Division 
      First Place: Parish Episcopal School, Dallas, Texas Second Place: Ecambia High School, Pensacola, Florida Third Place: Centro Boliviano Americano – Santa Cruz, Bolivia Human-Powered College/University Division 
      First Place: Campbell University, Buies Creek, North Carolina Second Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Third Place: University of Alabama in Huntsville Remote-Control Middle School/High School Division
      First Place: Bright Foundation, Surrey, British Columbia, Canada Second Place: Assumption College, Brangrak, Bangkok, Thailand Third Place: Erie High School, Erie, Colorado Remote-Control College/University Division
      First Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Second Place: Campbell University, Buies Creek, North Carolina Third Place: Tecnologico de Monterey – Campus Cuernvaca, Xochitepec, Morelos, Mexico Ingenuity Award 
       Queen’s University, Kingston, Ontario, Canada Phoenix Award 
      Human-Powered High School Division: International Hope School of Bangladesh, Uttara, Dhaka, Bangladesh College/University Division: Auburn University, Auburn, Alabama Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Southwest Oklahoma State University, Weatherford, Oklahoma Task Challenge Award 
      Remote-Control Middle School/High School Division: Assumption College, Bangrak, Bangkok, Thailand College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Project Review Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: Campbell University, Buies Creek, North Carolina Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Featherweight Award 
      Campbell University, Buies Creek, North Carolina Safety Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: University of Alabama in Huntsville Crash and Burn Award 
      Universidad de Monterrey, Nuevo Leon, Mexico (Human-Powered Division) Team Spirit Award 
      Instituto Tecnologico de Santo Domingo, Dominican Republic (Human-Powered Division) STEM Engagement Award 
      Human-Powered High School Division: Albertville Innovation School, Albertville, Alabama College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Remote-Control Middle School/High School Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic College/University Division: Tecnologico de Monterrey, Nuevo Leon, Mexico Social Media Award
      Human-Powered High School Division: International Hope School of Bagladesh, Uttara, Dhaka, Bangladesh College/University Division: Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Remote-Control Middle School/High School Division: ATLAS SkillTech University, Mumbai, Maharashtra, India College/University Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic Most Improved Performance Award
      Human-Powered High School Division: Space Education Institute, Leipzig, Germany College/University Division: Purdue University Northwest, Hammond, Indiana Remote-Control Middle School/High School Division: Erie High School, Erie, Colorado College/University Division: Campbell University, Buies Creek, North Carolina Pit Crew Award
      Human-Powered High School Division: Academy of Arts, Career, and Technology, Reno, Nevada College/University Division: Queen’s University, Kingston, Ontario, Canada Artemis Educator Award
      Fabion Diaz Palacious from Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Rookie of the Year
      Deira International School, Dubai, United Arab Emirates

      More than 500 students with 75 teams from around the world participated in the  31st year of the competition. Participating teams represented 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations. Teams were awarded points based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing multiple safety and design reviews with NASA engineers. 
      NASA expanded the 2025 challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. 
      “This student design challenge encourages the next generation of scientists and engineers to engage in the design process by providing innovative concepts and unique perspectives,” said Vemitra Alexander, who leads the challenge for NASA’s Office of STEM Engagement at Marshall. “This challenge also continues NASA’s legacy of providing valuable experiences to students who may be responsible for planning future space missions, including crewed missions to other worlds.”
      The rover challenge is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which will land Americans on the Moon while establishing a long-term presence for science and exploration, preparing for future human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      The competition is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. Since its inception in 1994, more than 15,000 students have participated – with many former students now working at NASA, or within the aerospace industry.    
      To learn more about the Human Exploration Rover Challenge, please visit: 
      https://www.nasa.gov/roverchallenge/home/index.html
      News Media Contact
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      View the full article
    • By NASA
      NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
      The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
      For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
      The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
      The 2025 Human Lander Challenge finalist teams are:
      California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
      “By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
      NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
      NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
      “If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
      The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
      During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
      This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.  
      As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
      For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
      Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
      Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
      Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
      “There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
      All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
      2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
      Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
      Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows astronauts working on the Moon alongside different technology systems. The Data & Reasoning Fabric technology could help these systems operate in harmony, supporting the astronauts and ground control on Earth.Credit: NASA Imagine your car is in conversation with other traffic and road signals as you travel. Those conversations help your car anticipate actions you can’t see: the sudden slowing of a truck as it begins to turn ahead of you, or an obscured traffic signal turning red. Meanwhile, this system has plotted a course that will drive you toward a station to recharge or refuel, while a conversation with a weather service prepares your windshield wipers and brakes for the rain ahead.
      This trip requires a lot of communication among systems from companies, government agencies, and organizations. How might these different entities – each with their own proprietary technology – share data safely in real time to make your trip safe, efficient, and enjoyable?
      Technologists at NASA’s Ames Research Center in California’s Silicon Valley created a framework called Data & Reasoning Fabric (DRF), a set of software infrastructure, tools, protocols, governance, and policies that allow safe, secure data sharing and logical prediction-making across different operators and machines. Originally developed with a focus on providing autonomous aviation drones with decision-making capabilities, DRF is now being explored for other applications.
      This means that one day, DRF-informed technology could allow your car to receive traffic data safely and securely from nearby stoplights and share data with other vehicles on the road. In this scenario, DRF is the choreographer of a complex dance of moving objects, ensuring each moves seamlessly in relation to one another towards a shared goal. The system is designed to create an integrated environment, combining data from systems that would otherwise be unable to interact with each other.
      “DRF is built to be used behind the scenes,” said David Alfano, chief of the Intelligent Systems Division at Ames. “Companies are developing autonomous technology, but their systems aren’t designed to work with technology from competitors. The DRF technology bridges that gap, organizing these systems to work together in harmony.”
      Traffic enhancements are just one use case for this innovative system. The technology could enhance how we use autonomy to support human needs on Earth, in the air, and even on the Moon.
      Supporting Complex Logistics
      To illustrate the technology’s impact, the DRF team worked with the city of Phoenix on an aviation solution to improve transportation of critical medical supplies from urban areas out to rural communities with limited access to these resources. An autonomous system identified where supplies were needed and directed a drone to pick up and transport supplies quickly and safely.
      “All the pieces need to come together, which takes a lot of effort. The DRF technology provides a framework where suppliers, medical centers, and drone operators can work together efficiently,” said Moustafa Abdelbaky, senior computer scientist at Ames. “The goal isn’t to remove human involvement, but help humans achieve more.”
      The DRF technology is part of a larger effort at Ames to develop concepts that enable autonomous operations while integrating them into the public and commercial sector to create safer, efficient environments.
      “At NASA, we’re always learning something. There’s a silver lining when one project ends, you can identify a new lesson learned, a new application, or a new economic opportunity to continue and scale that work,” said Supreet Kaur, lead systems engineer at Ames. “And because we leverage all of the knowledge we’ve gained through these experiments, we are able to make future research more robust.”
      Choreographed Autonomy
      Industries like modern mining involve a variety of autonomous and advanced vehicles and machinery, but these systems face the challenge of communicating sufficiently to operate in the same area. The DRF technology’s “choreography” might help them work together, improving efficiency. Researchers met with a commercial mining company to learn what issues they struggle with when using autonomous equipment to identify where DRF might provide future solutions.
      “If an autonomous drill is developed by one company, but the haul trucks are developed by another, those two machines are dancing to two different sets of music. Right now, they need to be kept apart manually for safety,” said Johnathan Stock, chief scientist for innovation at the Ames Intelligent Systems Division. “The DRF technology can harmonize their autonomous work so these mining companies can use autonomy across the board to create a safer, more effective enterprise.”
      Further testing of DRF on equipment like those used in mines could be done at the NASA Ames Roverscape, a surface that includes obstacles such as slopes and rocks, where DRF’s choreography could be put to the test.
      Stock also envisions DRF improving operations on the Moon. Autonomous vehicles could transport materials, drill, and excavate, while launch vehicles come and go. These operations will likely include systems from different companies or industries and could be choreographed by DRF.
      As autonomous systems and technologies increase across markets, on Earth, in orbit, and on the Moon, DRF researchers are ready to step on the dance floor to make sure everything runs smoothly.
      “When everyone’s dancing to the same tune, things run seamlessly, and more is possible.”
      Share
      Details
      Last Updated Mar 20, 2025 Related Terms
      General Explore More
      3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools
      Article 2 days ago 5 min read Risk of Venous Thromboembolism During Spaceflight
      Article 6 days ago 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Aeronautics Research Mission Directorate
      Intelligent Systems Division
      Space Technology Mission Directorate
      View the full article
  • Check out these Videos

×
×
  • Create New...