Jump to content

Recommended Posts

Posted
Be_part_of_something_big_card_full.jpg Video: 00:01:46

On 31 March 2021, the European Space Agency is opening the application process for its first astronaut selection in over a decade.

If you meet the minimum requirements and want to join Europe’s journey into space, this is your chance to apply.

Website esa.int/YourWayToSpace provides everything you need to know to prepare your application. All applications must be submitted to ESA’s careers website by 28 May 2021.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Solar Observatory Sees Coronal Loops Flicker Before Big Flares
      For decades, scientists have tried in vain to accurately predict solar flares — intense bursts of light on the Sun that can send a flurry of charged particles into the solar system. Now, using NASA’s Solar Dynamics Observatory, one team has identified flickering loops in the solar atmosphere, or corona, that seem to signal when the Sun is about to unleash a large flare.
      These warning signs could help NASA and other stakeholders protect astronauts as well as technology both in space and on the ground from hazardous space weather.
      NASA’s Solar Dynamics Observatory captured this image of coronal loops above an active region on the Sun in mid-January 2012. The image was taken in the 171 angstrom wavelength of extreme ultraviolet light. NASA/Solar Dynamics Observatory Led by heliophysicist Emily Mason of Predictive Sciences Inc. in San Diego, California, the team studied arch-like structures called coronal loops along the edge of the Sun. Coronal loops rise from magnetically driven active regions on the Sun, where solar flares also originate.
      The team looked at coronal loops near 50 strong solar flares, analyzing how their brightness in extreme ultraviolet light varied in the hours before a flare compared to loops above non-flaring regions. Like flashing warning lights, the loops above flaring regions varied much more than those above non-flaring regions.
      “We found that some of the extreme ultraviolet light above active regions flickers erratically for a few hours before a solar flare,” Mason explained. “The results are really important for understanding flares and may improve our ability to predict dangerous space weather.”
      Published in the Astrophysical Journal Letters in December 2024 and presented on Jan. 15, 2025, at a press conference during the 245th meeting of the American Astronomical Society, the results also hint that the flickering reaches a peak earlier for stronger flares. However, the team says more observations are needed to confirm this link.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The four panels in this movie show brightness changes in coronal loops in four different wavelengths of extreme ultraviolet light (131, 171, 193, and 304 angstroms) before a solar flare in December 2011. The images were taken by the Atmospheric Imaging Assembly (AIA) on NASA’s Solar Dynamics Observatory and processed to reveal flickering in the coronal loops. NASA/Solar Dynamics Observatory/JHelioviewer/E. Mason Other researchers have tried to predict solar flares by examining magnetic fields on the Sun, or by looking for consistent trends in other coronal loop features. However, Mason and her colleagues believe that measuring the brightness variations in coronal loops could provide more precise warnings than those methods — signaling oncoming flares 2 to 6 hours ahead of time with 60 to 80 percent accuracy.
      “A lot of the predictive schemes that have been developed are still predicting the likelihood of flares in a given time period and not necessarily exact timing,” said team member Seth Garland of the Air Force Institute of Technology at Wright-Patterson Air Force Base in Ohio.
      Each solar flare is like a snowflake — every single flare is unique.
      Kara kniezewski
      Air Force Institute of Technology
      “The Sun’s corona is a dynamic environment, and each solar flare is like a snowflake — every single flare is unique,” said team member Kara Kniezewski, a graduate student at the Air Force Institute of Technology and lead author of the paper. “We find that searching for periods of ‘chaotic’ behavior in the coronal loop emission, rather than specific trends, provide a much more consistent metric and may also correlate with how strong a flare will be.”
      The scientists hope their findings about coronal loops can eventually be used to help keep astronauts, spacecraft, electrical grids, and other assets safe from the harmful radiation that accompanies solar flares. For example, an automated system could look for brightness changes in coronal loops in real-time images from the Solar Dynamics Observatory and issue alerts.
      “Previous work by other researchers reports some interesting prediction metrics,” said co-author Vadim Uritsky of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Catholic University of Washington in D.C. “We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations.”
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jan 15, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Space Weather The Sun Explore More
      7 min read NASA Celebrates Edwin Hubble’s Discovery of a New Universe


      Article


      5 hours ago
      6 min read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas


      Article


      1 day ago
      6 min read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA/CXC/SAO/D. Bogensberger et al; Image Processing: NASA/CXC/SAO/N. Wolk; Even matter ejected by black holes can run into objects in the dark. Using NASA’s Chandra X-ray Observatory, astronomers have found an unusual mark from a giant black hole’s powerful jet striking an unidentified object in its path.
      The discovery was made in a galaxy called Centaurus A (Cen A), located about 12 million light-years from Earth. Astronomers have long studied Cen A because it has a supermassive black hole in its center sending out spectacular jets that stretch out across the entire galaxy. The black hole launches this jet of high-energy particles not from inside the black hole, but from intense gravitational and magnetic fields around it.
      The image shows low-energy X-rays seen by Chandra represented in pink, medium-energy X-rays in purple, and the highest-energy X-rays in blue.
      In this latest study, researchers determined that the jet is — at least in certain spots — moving at close to the speed of light. Using the deepest X-ray image ever made of Cen A, they also found a patch of V-shaped emission connected to a bright source of X-rays, something that had not been seen before in this galaxy.
      Called C4, this source is located close to the path of the jet from the supermassive black hole and is highlighted in the inset. The arms of the “V” are at least about 700 light-years long. For context, the nearest star to Earth is about 4 light-years away.
      Source C4 in the Centaurus A galaxy.NASA/CXC/SAO/D. Bogensberger et al; Image Processing: NASA/CXC/SAO/N. Wolk; While the researchers have ideas about what is happening, the identity of the object being blasted is a mystery because it is too distant for its details to be seen, even in images from the current most powerful telescopes.
      The incognito object being rammed may be a massive star, either by itself or with a companion star. The X-rays from C4 could be caused by the collision between the particles in the jet and the gas in a wind blowing away from the star. This collision can generate turbulence, causing a rise in the density of the gas in the jet. This, in turn, ignites the X-ray emission seen with Chandra.
      The shape of the “V,” however, is not completely understood. The stream of X-rays trailing behind the source in the bottom arm of the “V” is roughly parallel to the jet, matching the picture of turbulence causing enhanced X-ray emission behind an obstacle in the path of the jet. The other arm of the “V” is harder to explain because it has a large angle to the jet, and astronomers are unsure what could explain that.
      This is not the first time astronomers have seen a black hole jet running into other objects in Cen A. There are several other examples where a jet appears to be striking objects — possibly massive stars or gas clouds. However, C4 stands out from these by having the V-shape in X-rays, while other obstacles in the jet’s path produce elliptical blobs in the X-ray image. Chandra is the only X-ray observatory capable of seeing this feature. Astronomers are trying to determine why C4 has this different post-contact appearance, but it could be related to the type of object that the jet is striking or how directly the jet is striking it.
      A paper describing these results appears in a recent issue of The Astrophysical Journal. The authors of the study are David Bogensberger (University of Michigan), Jon M. Miller (University of Michigan), Richard Mushotsky (University of Maryland), Niel Brandt (Penn State University), Elias Kammoun (University of Toulouse, France), Abderahmen Zogbhi (University of Maryland), and Ehud Behar (Israel Institute of Technology).
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a series of images focusing on a collision between a jet of matter blasting out of a distant black hole, and a mysterious, incognito object.
      At the center of the primary image is a bright white dot, encircled by a hazy purple blue ring tinged with neon blue. This is the black hole at the heart of the galaxy called Centaurus A. Shooting out of the black hole is a stream of ejected matter. This stream, or jet, shoots in two opposite directions. It shoots toward us, widening as it reaches our upper left, and away from us, growing thinner and more faint as it recedes toward the lower right. In the primary image, the jet resembles a trail of hot pink smoke. Other pockets of granular, hot pink gas can be found throughout the image. Here, pink represents low energy X-rays observed by Chandra, purple represents medium energy X-rays, and blue represents high energy X-rays.
      Near our lower right, where the jet is at its thinnest, is a distinct pink “V”, its arms opening toward our lower right. This mark is understood to be the result of the jet striking an unidentified object that lay in its path. A labeled version of the image highlights this region, and names the point of the V-shape, the incognito object, C4. A wide view version of the image is composited with optical data.
      At the distance of Cen A, the arms of the V-shape appear rather small. In fact, each arm is at least 700 light-years long. The jet itself is 30,000 light-years long. For context, the nearest star to the Sun is about 4 light-years away.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      Following eight months of intense research, design, and prototyping, six university teams presented their “Inflatable Systems for Lunar Operations” concepts to a panel of judges at NASA’s 2024 Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge forum. 
      The challenge, funded by NASA’s Space Technology Mission Directorate and Office of STEM Engagement, seeks novel ideas from higher education on a new topic each year and supports the agency’s Lunar Surface Innovation Initiative in developing new approaches and innovative technologies to pave the way for successful exploration on the surface of the Moon. This year, teams were asked to develop low Size, Weight, and Power inflatable technologies, structures and systems that could benefit future Artemis missions to the Moon and beyond. 
      Taking top honors at this year’s forum receiving the Artemis Award was Northwestern University with National Aerospace Corporation & IMS Engineered Products, with their concept titled METALS: Metallic Expandable Technology for Artemis Lunar Structures. The Artemis Award is given to the team whose concept has the best potential to contribute to and be integrated into an Artemis mission.  
      The Northwestern University BIG Idea Challenge team developed METALS, an inflatable metal concept for long-term storage of cryogenic fluid on the Moon. The concept earned the Artemis Award, top honors in NASA’s 2024 BIG Idea Challenge.Credit: National Institute of Aerospace The Artemis Award is a generous recognition of the potential impact that our work can have. We hope it can be a critical part of the Artemis Program moving forward. We’re exceptionally grateful to have the opportunity to engage directly with NASA in research for the Artemis Program in such a direct way while we’re still students.” 
      Julian Rocher
      Team co-lead for Northwestern University
      METALS is an inflatable system for long term cryogenic fluid storage on the Moon. Stacked layers of sheet metal are welded along their aligned edges, stacked inside a rocket, and inflated once on the lunar surface. The manufacturing process is scalable, reliable, and simple. Notably, METALS boasts superior performance in the harsh lunar environment, including resistance against radiation, abrasion, micrometeorites, gas permeability, and temperature extremes.
      Northwestern University team members pose with lunar inflatable prototypes from their METALS project in NASA’s 2024 BIG Idea Challenge. Credit: Northwestern University We learned to ask the right questions, and we learned to question what is the status quo and to go above and beyond and think outside the box. It’s a special mindset for everyone to have on this team… it’s what forces us to innovate.” 
      Trevor Abbott
      Team co-lead for Northwestern University
      Arizona State University took home the 2024 BIG Idea Challenge Systems Engineering prize for their project, AEGIS: Inflatable Lunar Landing Pad System. The AEGIS system is designed to deflect the exhaust gasses of lunar landers thereby reducing regolith disturbances generated during landing. The system is deployed on the lunar surface where it uses 6 anchors in its base to secure itself to the ground. Once inflated to its deployed size of 14 m in diameter, AEGIS provides a reusable precision landing zone for incoming landers.
      Arizona State University earned the Systems Engineering prize for their BIG Idea Challenge project: AEGIS: Inflatable Lunar Landing Pad System. Arizona State University
      This year’s forum was held in tandem with the Lunar Surface Innovation Consortium’s (LSIC) Fall Meeting at the University of Nevada, Las Vegas, where students had the opportunity to network with NASA and industry experts, attend LSIC panels and presentations, and participate in the technical poster session. The consortium provides a forum for NASA to communicate technological requirements, needs, and opportunities, and for the community to share with NASA existing capabilities and critical gaps. 
      We felt that hosting this year’s BIG Idea Forum in conjunction with the LSIC Fall Meeting would be an exciting opportunity for these incredibly talented students to network with today’s aerospace leaders in government, industry, and academia. Their innovative thinking and novel contributions are critical skills required for the successful development of the technologies that will drive exploration on the Moon and beyond.” 
      Niki Werkheiser
      Director of Technology Maturation in NASA’s Space Technology Mission Directorate
      In February, teams submitted proposal packages, from which six finalists were selected for funding of up to $150,000 depending on each team’s prototype and budget. The finalists then worked for eight months designing, developing, and demonstrating their concepts. The 2024 BIG Idea program concluded at its annual forum, where teams presented their results and answered questions from judges. Experts from NASA, Johns Hopkins Applied Physics Laboratory, and other aerospace companies evaluated the student concepts based on technical innovation, credibility, management, and the teams’ verification testing. In addition to the presentation, the teams provided a technical paper and poster detailing their proposed inflatable system for lunar operations. 
      Year after year, BIG Idea student teams spend countless hours working on tough engineering design challenges. Their dedication and ‘game-changing’ ideas never cease to amaze me. They all have bright futures ahead of them.” 
      David Moore
      Program Director for NASA’s Game Changing Development program
      Second-year mechanical engineering student Connor Owens, left, and electrical engineering graduate student Sarwan Shah run through how they’ll test the sheath-and-auger anchor for the axial vertical pull test of the base anchor in a former shower room in Sun Devil Hall. Image credit: Charlie Leight/ASU News The University of Maryland BIG Idea Challenge team’s Auxiliary Inflatable Wheels for Lunar Rover project in a testing environment University of Maryland Students from University of Michigan and a component of their Cargo-BEEP (Cargo Balancing Expandable Exploration Platform) projectUniversity of Michigan Northwestern University welders prepare to work on their 2024 BIG Idea Challenge prototype, a metal inflatable designed for deployment on the Moon.Northwestern University Brigham Young University’s Untethered and Modular Inflatable Robots for Lunar Operations projectBrigham Young University California Institute of Technology’s PILLARS: Plume-deployed Inflatable for Launch and Landing Abrasive Regolith Shielding projectCalifornia Institute of Technology The Inflatable Systems for Lunar Operations theme allowed teams to submit various technology concepts such as soft robotics, deployable infrastructure components, emergency shelters or other devices for extended extravehicular activities, pressurized tunnels and airlocks, and debris shields and dust protection systems. National Institute of Aerospace NASA’s Space Technology Mission Directorate sponsors the BIG Idea Challenge through a collaboration between its Game Changing Development program and the agency’s Office of STEM Engagement. It is managed by a partnership between the National Institute of Aerospace and Johns Hopkins Applied Physics Laboratory.   
      Team presentations, technical papers, and digital posters are available on the BIG Idea website.       
      For full competition details, visit:  https://bigidea.nianet.org/2024-challenge
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Game Changing Development Projects
      Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
      NASA’s Lunar Surface Innovation Initiative
      Get Involved
      View the full article
    • By NASA
      Linda Spuler, emergency manager at NASA’s Johnson Space Center in Houston, believes that everyone has a story. “Our stories highlight what we have in common, but they also make us each unique,” she said. 

      Spuler has worked at Johnson for over 32 years, spending most of her career in Center Operations. Her story has involved helping to coordinate emergency response teams at Johnson in preparation for natural disasters. “Since Johnson is situated on the coast, a good portion of my job revolves around planning for hurricanes,” she said.   

      Spuler has dealt with natural disasters at Johnson from Tropical Storm Allison in 2001 to Hurricane Beryl in 2024, but none had a greater personal impact than Hurricane Ike, which wrought havoc in Texas in September 2008. “Participating in the response to Hurricane Ike was a proud moment for me,” she said. “We worked from sunup to sundown restoring the center. Civil servants and contractors from various organizations came together, and for those two weeks, our differences didn’t matter.”  
      NASA’s Johnson Space Center Emergency Manager Linda Spuler, front, leads an emergency exercise for first responders. Image courtesy of Linda Spuler Spuler believes that NASA’s mission unites everyone – team members, astronauts, and support teams alike. “Remembering why we are all here energizes us and gets us excited about working for NASA,” she said.  

      Spuler’s journey at NASA began as a dream not originally her own. Her path was shaped by the aspirations of her mother, who was born on an Ojibwe (Chippewa) reservation in Ashland, Wisconsin.  
      “Although my grandmother lived in Chicago, she returned to the reservation to have her children. My mom is still a voting member of the Bad River Tribe,” said Spuler. 

      “My mom was studying aerospace engineering at the University of Chicago when she met my dad, a fun-loving electrical engineering major who traced his lineage back to Davy Crockett on his father’s side and Ireland on his mother’s,” said Spuler. “She chose to abandon aerospace to marry my dad, whose degree and love for space brought him to work at Johnson.” 
      Linda Spuler accepts the Thirty-Year Service Award from Johnson Director Vanessa Wyche to commemorate her service at NASA. NASA/David DeHoyos Spuler said her mother was very proud that her father worked for NASA. “She was very happy when I chose to work here, too,” she said. “She taught me the value and reward of working hard. My mom is proud of her heritage but she is cautious of sharing her story.” 
      Linda Spuler at an Easter egg hunt at NASA’s Johnson Space Center in 1971. Image courtesy of Linda Spuler Spuler enjoys learning about Ojibwe culture from her mother. “Every Thanksgiving, we enjoy wild rice from the Bad River sent from the “aunties” that still live on the reservation,” Spuler shared. She also represents her culture and pride through her work, honoring the legacy of those who came before her and sharing the story of her mother, her father, and now herself.
      Linda Spuler receives the 2019 Furlough Heroes Awards alongside her son, Logan. NASA/James Blair “I celebrate the unique story that makes me part Ojibwe, part Polish, part Texas revolutionary, part Irish, part English, and all me,” she said.  
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Tessa Keating is a public affairs specialist in the Office of Communications at NASA’s Stennis Space Center. Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center.NASA/Danny Nowlin Every task at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is not simply work for Tessa Keating – it is a meaningful step toward a part of something great.
      “It has been a dream career. I count it an honor to share the NASA story and humbled to know our team witnesses a part of history,” said Keating, a NASA public affairs specialist in the NASA Stennis Office of Communications. “Every day is an opportunity to contribute to the NASA legacy that will last beyond today. “
      Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center. In fact, she organized much of the recent Space Flight Awareness Silver Snoopy Award ceremony at NASA Stennis in August, except for one part. As the ceremony finished, NASA Stennis Director John Bailey said one more award was to be given.
      No one was more surprised than the logistics coordinator herself when Keating’s family joined her on stage. The 21-year NASA Stennis employee was honored for her outstanding contributions in sharing the NASA story of exploring the secrets of the universe for the benefit of all with a diverse audience and for equipping everyone with a broader knowledge and appreciation of the center’s vital role within NASA.
      “I am not sure I will ever be able to top that in my NASA career,” Keating said.
      It became a full-circle moment that she described as a great honor. The Silver Snoopy is the astronauts’ personal award and is presented to less than 1 percent of the total NASA workforce. Reid Wiseman, a NASA astronaut and commander for the upcoming Artemis II mission around the Moon, presented the award to Keating, along with a lapel pin flown aboard NASA’s Artemis I mission.
      As NASA returns to the Moon for scientific discovery, economic benefits, and inspiration for the Artemis Generation, Keating says it will be extra-special watching Wiseman and the Artemis II crew lay the groundwork for future milestones.
      Keating helped lay the groundwork ahead of the successful Artemis I mission. She served as lead logistics for onsite guest operations in 2021 when NASA conducted the most powerful propulsion test in more than 40 years at NASA Stennis. A full-duration hot fire of the first SLS (Space Launch System) core stage and its four RS-25 engines culminated a year-long series of integrated tests. Keating coordinated the viewing of the hot fire for some 200 agency leaders and guests, despite restricted settings due to COVID-19.  
      “It was truly a highlight. I had grown up hearing my parents and grandparents talk about engines that were tested during the Apollo era, and I had never experienced something of that magnitude,” Keating said. “I was able to live it, feel it, and watch the next part of NASA history onsite.”
      For Keating, the groundwork for a NASA career came following graduation with a bachelor’s degree in Journalism from William Carey University and a master’s degree in Communications from The University of Southern Mississippi, both schools in Hattiesburg, Mississippi. Having grown up in Pearl River County, Mississippi, for most of her life, she knew about NASA Stennis. However, she did not think she could ever work at the center because her strengths were in areas beyond math and science.
      Following some additional exploration and conversations with influential people in her life, Keating discovered she, in fact, could be a part of something great at NASA Stennis.
      “The possibilities are endless at NASA when you allow yourself to put your best foot forward and research the many opportunities that are available. There is always room for various types of studies,” Keating said. “I credit where I am in my career to God and to the people who have helped to guide my path. I will be forever grateful.” 
      Learn more about the people who work at NASA Stennis View the full article
  • Check out these Videos

×
×
  • Create New...