Jump to content

Corridor test of Proba-3’s formation flying sensors


Recommended Posts

Proba-3 satellites form artificial eclipse

The longest corridor in ESA’s largest establishment was turned into a test site for one of the Agency’s most ambitious future missions, Proba-3. The two satellites making up this mission will line up so that one casts a shadow onto the other, revealing inner regions of the Sun’s ghostly atmosphere. But such precision formation flying will only be possible through a vision-based sensor system allowing one satellite to lock onto the other.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By SpaceX
      Starship | Fifth Flight Test
    • By NASA
      Test caption textView the full article
    • By NASA
      NASA has selected the University of New Hampshire in Durham to build Solar Wind Plasma Sensors for the Lagrange 1 Series project, part of the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Next Program.
      This cost-plus-no-fee contract is valued at approximately $24.3 million and includes the development of two sensors that will study the Sun’s constant outflow of solar wind. The data collected will support the nation’s efforts to better understand space weather around Earth and to provide warnings about impacts such as radio and GPS interruptions from solar storms.
      The overall period of performance for this contract will be from Thursday, Oct. 24, and continue for a total of approximately nine years, concluding 15 months after the launch of the second instrument. The work will take place at the university’s facility in Durham, New Hampshire, and at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. Johns Hopkins is the significant subcontractor.
      Under this contract, the University of New Hampshire will be required to design, analyze, develop, fabricate, integrate, test, verify, and evaluate the sensors, support their launch, supply and maintain the instrument ground support equipment, and support post-launch mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.
      The Solar Wind Plasma Sensors will measure solar wind, a supersonic flow of hot plasma from the Sun, and provide data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings and alerts that help mitigate space weather impacts. The measurements will be used to characterize coronal mass ejections, corotating interaction regions, interplanetary shocks and high-speed flows associated with coronal holes. The measurements will also include observing the bulk ion velocity, ion temperature and density and derived dynamic pressure.
      NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the L1 Series project. NOAA is the program owner that provides funds and manages the program, operations, and data products and dissemination to users. NASA and commercial partners develop, build, and launch the instruments and spacecraft on behalf of NOAA.
      For information about NASA and agency programs, please visit:
      https://www.nasa.gov
      -end-
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      Share
      Details
      Last Updated Oct 24, 2024 EditorRob GarnerContactJeremy EggersLocationGoddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division NOAA (National Oceanic and Atmospheric Administration) View the full article
    • By NASA
      Astronaut and Artemis II pilot, Victor Glover, maneuvers the latch handle on an Orion test side hatch during performance evaluations at the Lockheed Martin Space campus in Littleton, Colorado.Photo credit: Lockheed Martin Artemis II NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, and CSA (Canadian Space Agency) astronaut Jeremy Hansen recently traveled to Lockheed Martin Space in Littleton, Colorado, where they practiced opening and closing an Orion crew module side hatch model to help demonstrate its reliability and durability during their 10-day mission around the Moon.
      During normal mission operations, the crew will not operate the hatches – the ground systems team at NASA’s Kennedy Space Center in Florida will assist the crew into Orion at the launch pad, then close the hatch behind them prior to liftoff. After splashdown in the Pacific Ocean, recovery teams will open the side hatch and help crew to exit.
      Back-up crew members Andre Douglas of NASA and Jenni Gibbons of CSA also trained on hatch operations, which help ensure the crew can safely enter and exit the spacecraft in the event of an emergency. The side hatch is normally opened using a manual gearbox system, but in an emergency, the hatch has release mechanisms containing small pyrotechnic (explosive) devices that release the latch pins on the hatch instantaneously, allowing the hatch to open quickly.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.  
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light.
      This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.NASA/Chris Gunn The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor.
      The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour.
      “We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.”
      The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass.
      This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.NASA/Chris Gunn Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.
      To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands).
      If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior.
      Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year.
      In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory.
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      301-286-1940
      Share
      Details
      Last Updated Oct 08, 2024 EditorJamie AdkinsContactClaire Andreoli Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Technology Explore More
      2 min read Tech Today: Spraying for Food Safety
      Article 19 hours ago 5 min read NASA: New Insights into How Mars Became Uninhabitable
      NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how…
      Article 20 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape
      This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into…
      Article 4 days ago View the full article
  • Check out these Videos

×
×
  • Create New...