Members Can Post Anonymously On This Site
Fox News: Deadline for Pentagon to disclose UFO report draws closer
-
Similar Topics
-
By NASA
Insights into metal alloy solidification
Researchers report details of phase and structure in the solidification of metal alloys on the International Space Station, including formation of microstructures. Because these microstructures determine a material’s mechanical properties, this work could support improvements in techniques for producing coatings and additive manufacturing or 3D printing processes.
METCOMP, an ESA (European Space Agency) investigation, studied solidification in microgravity using transparent organic mixtures as stand-ins for metal alloys. Conducting the research in microgravity removed the influence of convection and other effects of gravity. Results help scientists better understand and validate models of solidification mechanisms, enabling better forecasting of microstructures and improving manufacturing processes.
Image from the METCOMP investigation of how a metal alloy could look like as it solidifies. E-USOC Measuring the height of upper-atmospheric electrical discharges
Researchers determined the height of a blue discharge from a thundercloud using ground-based electric field measurements and space-based optical measurements from Atmosphere-Space Interactions Monitor (ASIM). This finding helps scientists better understand how these high-altitude lightning-related events affect atmospheric chemistry and could help improve atmospheric models and climate and weather predictions.
ESA’s ASIM is an Earth observation facility that studies severe thunderstorms and upper-atmospheric lighting events and their role in the Earth’s atmosphere and climate. Upper-atmospheric lightning, also known as transient luminous events, occurs well above the altitudes of normal lightning and storm clouds. The data collected by ASIM could support research on the statistical properties of many upper atmosphere lightning events, such as comparison of peak intensities of blue and red pulses with reports from lightning detection networks.
An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Modeling a complex neutron star
Scientists report that they can use modeling of neutron star PSRJ1231−1411’s X-ray pulses to infer its mass and radius and narrow the possible behaviors of the dense matter at its core. This finding provides a better understanding of the composition and structure of these celestial objects, improving models that help answer questions about conditions in the universe.
The Neutron star Interior Composition Explorer provides high-precision measurements of pulses of X-ray radiation from neutron stars. This particular neutron star presented challenges in finding a fit between models and data, possibly due to fundamental issues with its pulse profile. The authors recommend a program of simulations using synthetic data to determine whether there are fundamental issues with this type of pulse profile that could prevent efforts to obtain tighter and more robust constraints.
Concentrators on the Neutron star Interior Composition Explorer instrument.NASAView the full article
-
By NASA
Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”
Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
“Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum.
Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 16, 2025 Related Terms
Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
-
By NASA
Measurements from space support wildfire risk predictions
Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.
As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data
Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.
Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space
Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.
Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
-
By USH
During a live Fox News broadcast covering the intense Palisades wildfire in California, an unusual event captured viewers' attention. A camera aimed at the blazing inferno recorded a mysterious spherical object emerging suddenly from the middle of the flames. This object moved at a remarkable speed before vanishing over the treetops, leaving many wondering about its origin and purpose.
The object does not appear to be debris carried aloft by the fire’s updraft. Its trajectory and speed seem too controlled and deliberate to be a random effect of the wildfire. Additionally, the object shows no signs of explosion or disintegration, characteristics that might be expected if it were merely a piece of material affected by the intense heat.
Observers have ruled out common explanations such as birds, planes, or helicopters. The object’s rapid movement and apparent change in direction suggest advanced maneuverability, sparking comparisons to UFOs/UAPs.
With the growing number of reported sightings involving drones, orbs, and UFOs, the appearance of this potential UFO or drone in such an environment is especially intriguing. Could this object represent evidence of advanced technology monitoring Earth's natural disasters? Or is it an entirely natural but poorly understood phenomenon?
View the full article
-
By NASA
NASA astronaut Shane Kimbrough and ESA (European Space Agency) astronaut Thomas Pesquet conduct a spacewalk to complete work on the International Space Station on June 25, 2021.Credit: NASA Two NASA astronauts will venture outside the International Space Station, conducting U.S. spacewalk 91 on Thursday, Jan. 16, and U.S. spacewalk 92 on Thursday, Jan. 23, to complete station upgrades.
NASA also will discuss the pair of upcoming spacewalks during a news conference at 2 p.m. EST Friday, Jan. 10, on NASA+ from the agency’s Johnson Space Center in Houston. Learn how to watch NASA content through a variety of platforms, including social media.
Participants in the news conference from NASA Johnson include:
Bill Spetch, operations integration manager Nicole McElroy, spacewalk flight director Media interested in participating in person or by phone must contact the NASA Johnson newsroom no later than 10 a.m. Wednesday, Jan. 8, at: 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial in no later than 15 minutes before the start of the news conference. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.
The first spacewalk is scheduled to begin at 7 a.m. on Jan. 16, and last about six and a half hours. NASA will provide live coverage beginning at 5:30 a.m. on NASA+.
NASA astronauts Nick Hague and Suni Williams will replace a rate gyro assembly that helps provide orientation control for the station, install patches to cover damaged areas of light filters for an X-ray telescope called NICER (Neutron star Interior Composition Explorer), and replace a reflector device used for navigational data on one of the international docking adapters. Additionally, the pair will check access areas and connector tools that will be used for future maintenance work on the Alpha Magnetic Spectrometer.
Hague will serve as spacewalk crew member 1 and will wear a suit with red stripes. Williams will serve as spacewalk crew member 2 and will wear an unmarked suit. This will be the fourth for Hague and the eighth for Williams. It will be the 273rd spacewalk in support of space station assembly, maintenance, and upgrades.
The second spacewalk is scheduled to begin at 7 a.m. on Jan. 23, and last about six and a half hours. NASA will provide live coverage beginning at 5:30 a.m. on NASA+.
Astronauts will remove a radio frequency group antenna assembly from the station’s truss, collect samples of surface material for analysis from the Destiny laboratory and the Quest airlock to see whether microorganisms may exist on the exterior of the orbital complex, and prepare a spare elbow joint for the Canadarm2 robotic arm in the event it is needed for a replacement.
Following completion of U.S. spacewalk 91, NASA will name the participating crew members for U.S. spacewalk 92. It will be the 274th spacewalk in support of space station assembly, maintenance, and upgrades.
Learn more about International Space Station research and operations at:
https://www.nasa.gov/station
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Jan 07, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
International Space Station (ISS) Humans in Space Johnson Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.