Members Can Post Anonymously On This Site
Maps to improve forest biomass estimates
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Starling swarm’s extended mission tested advanced autonomous maneuvering capabilities.NASA/Daniel Rutter As missions to low Earth orbit become more frequent, space traffic coordination remains a key element to efficiently operating in space. Different satellite operators using autonomous systems need to operate together and manage increasing workloads. NASA’s Starling spacecraft swarm recently tested a coordination with SpaceX’s Starlink constellation, demonstrating a potential solution to enhance space traffic coordination.
Led by the Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley, Starling originally set out to demonstrate autonomous planning and execution of orbital maneuvers with the mission’s four small spacecraft. After achieving its primary objectives, the Starling mission expanded to become Starling 1.5, an experiment to demonstrate maneuvers between the Starling swarm and SpaceX’s Starlink satellites, which also maneuver autonomously.
Coordination in Low Earth Orbit
Current space traffic coordination systems screen trajectories of spacecraft and objects in space and alert operators on the ground of potential conjunctions, which occur when two objects exceed an operator’s tolerance for a close approach along their orbital paths. Spacecraft operators can request notification at a range of probabilities, often anywhere from a 1 in 10,000 likelihood of a collision to 1 in 1,000,000 or lower.
Conjunction mitigation between satellite operators requires manual coordination through calls or emails on the ground. An operator may receive a notification for a number of reasons including recently maneuvering their satellite, nearby space debris, or if another satellite adjusts its orbit.
Once an operator is aware of a potential conjunction, they must work together with other operators to reduce the probability of a collision. This can result in time-consuming calls or emails between ground operations teams with different approaches to safe operations. It also means maneuvers may require several days to plan and implement. This timeline can be challenging for missions that require quick adjustments to capture important data.
“Occasionally, we’ll do a maneuver that we find out wasn’t necessary if we could have waited before making a decision. Sometimes you can’t wait three days to reposition and observe. Being able to react within a few hours can make new satellite observations possible,” said Nathan Benz, project manager of Starling 1.5 at NASA Ames.
Improving Coordination for Autonomous Maneuvering
The first step in improving coordination was to develop a reliable way to signal maneuver responsibility between operators. “Usually, SpaceX takes the responsibility to move out of the way when another operator shares their predicted trajectory information,” said Benz.
SpaceX and NASA collaborated to design a conjunction screening service, which SpaceX then implemented. Satellite operators can submit trajectories and receive conjunction data quickly, then accept responsibility to maneuver away from a potential conjunction.
“For this experiment, NASA’s Starling accepted responsibility to move using the screening service, successfully tested our system’s performance, then autonomously planned and executed the maneuver for the NASA Starling satellite, resolving a close approach with a Starlink satellite,” said Benz.
Through NASA’s Starling 1.5 experiment, the agency helped validate SpaceX’s Starlink screening service. The Office of Space Commerce within the U.S. Department of Commerce also worked with SpaceX to understand and assess the Starlink screening service.
Quicker Response to Changes on Earth
The time it takes to plan maneuvers in today’s orbital traffic environment limits the number of satellites a human operator can manage and their ability to collect data or serve customers.
“A fully automated system that is flexible and adaptable between satellite constellations is ideal for an environment of multiple satellite operators, all of whom have differing criteria for mitigating collision risks,” said Lauri Newman, program officer for NASA’s Conjunction Assessment Risk Analysis program at the agency’s headquarters in Washington.
Reducing the time necessary to plan maneuvers could open up a new class of missions, where quick responses to changes in space or on Earth’s surface are possible. Satellites capable of making quicker movements could adjust their orbital position to capture a natural disaster from above, or respond to one swarm member’s interesting observations, moving to provide a more thorough look.
“With improved access and use of low Earth orbit and the necessity to provide a more advanced space traffic coordination system, Starling 1.5 is providing critical data. Starling 1.5 is the result of a successful partnership between NASA, the Department of Commerce, and SpaceX, maturing technology to solve such challenges,” said Roger Hunter, program manager of the Small Spacecraft Technology program. “We look forward to the sustained impact of the Starling technologies as they continue demonstrating advancements in spacecraft coordination, cooperation, and autonomy.”
NASA Ames leads the Starling projects. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission.
Share
Details
Last Updated Mar 26, 2025 LocationAmes Research Center Related Terms
Ames Research Center General Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
Article 58 seconds ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 20 hours ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
Article 22 hours ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Space Technology Mission Directorate
Conjunction Assessment (CA Home)
Starling
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Located off the coast of Ecuador, Paramount seamount is among the kinds of ocean floor features that certain ocean-observing satellites like SWOT can detect by how their gravitational pull affects the sea surface.NOAA Okeanos Explorer Program More accurate maps based on data from the SWOT mission can improve underwater navigation and result in greater knowledge of how heat and life move around the world’s ocean.
There are better maps of the Moon’s surface than of the bottom of Earth’s ocean. Researchers have been working for decades to change that. As part of the ongoing effort, a NASA-supported team recently published one of the most detailed maps yet of the ocean floor, using data from the SWOT (Surface Water and Ocean Topography) satellite, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales).
Ships outfitted with sonar instruments can make direct, incredibly detailed measurements of the ocean floor. But to date, only about 25% of it has been surveyed in this way. To produce a global picture of the seafloor, researchers have relied on satellite data.
This animation shows seafloor features derived from SWOT data on regions off Mexico, South America, and the Antarctic Peninsula. Purple denotes regions that are lower relative to higher areas like seamounts, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.
NASA’s Scientific Visualization Studio Why Seafloor Maps Matter
More accurate maps of the ocean floor are crucial for a range of seafaring activities, including navigation and laying underwater communications cables. “Seafloor mapping is key in both established and emerging economic opportunities, including rare-mineral seabed mining, optimizing shipping routes, hazard detection, and seabed warfare operations,” said Nadya Vinogradova Shiffer, head of physical oceanography programs at NASA Headquarters in Washington.
Accurate seafloor maps are also important for an improved understanding of deep-sea currents and tides, which affect life in the abyss, as well as geologic processes like plate tectonics. Underwater mountains called seamounts and other ocean floor features like their smaller cousins, abyssal hills, influence the movement of heat and nutrients in the deep sea and can attract life. The effects of these physical features can even be felt at the surface by the influence they exert on ecosystems that human communities depend on.
This map of seafloor features like abyssal hills in the Indian Ocean is based on sea surface height data from the SWOT satellite. Purple denotes regions that are lower relative to higher areas like abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This global map of seafloor features is based on ocean height data from the SWOT satellite. Purple denotes regions that are lower compared to higher features such as seamounts and abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This map of ocean floor features like seamounts southwest of Acapulco, Mexico, is based on sea surface height data from SWOT. Purple denotes regions that are lower relative to higher areas like seamounts, indicated with green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory Mapping the seafloor isn’t the SWOT mission’s primary purpose. Launched in December 2022, the satellite measures the height of water on nearly all of Earth’s surface, including the ocean, lakes, reservoirs, and rivers. Researchers can use these differences in height to create a kind of topographic map of the surface of fresh- and seawater. This data can then be used for tasks such as assessing changes in sea ice or tracking how floods progress down a river.
“The SWOT satellite was a huge jump in our ability to map the seafloor,” said David Sandwell, a geophysicist at Scripps Institution of Oceanography in La Jolla, California. He’s used satellite data to chart the bottom of the ocean since the 1990s and was one of the researchers responsible for the SWOT-based seafloor map, which was published in the journal Science in December 2024.
How It Works
The study authors relied the fact that because geologic features like seamounts and abyssal hills have more mass than their surroundings, they exert a slightly stronger gravitational pull that creates small, measurable bumps in the sea surface above them. These subtle gravity signatures help researchers predict the kind of seafloor feature that produced them.
Through repeated observations — SWOT covers about 90% of the globe every 21 days — the satellite is sensitive enough to pick up these minute differences, with centimeter-level accuracy, in sea surface height caused by the features below. Sandwell and his colleagues used a year’s worth of SWOT data to focus on seamounts, abyssal hills, and underwater continental margins, where continental crust meets oceanic crust.
Previous ocean-observing satellites have detected massive versions of these bottom features, such as seamounts over roughly 3,300 feet (1 kilometer) tall. The SWOT satellite can pick up seamounts less than half that height, potentially increasing the number of known seamounts from 44,000 to 100,000. These underwater mountains stick up into the water, influencing deep sea currents. This can concentrate nutrients along their slopes, attracting organisms and creating oases on what would otherwise be barren patches of seafloor.
Looking Into the Abyss
The improved view from SWOT also gives researchers more insight into the geologic history of the planet.
“Abyssal hills are the most abundant landform on Earth, covering about 70% of the ocean floor,” said Yao Yu, an oceanographer at Scripps Institution of Oceanography and lead author on the paper. “These hills are only a few kilometers wide, which makes them hard to observe from space. We were surprised that SWOT could see them so well.”
Abyssal hills form in parallel bands, like the ridges on a washboard, where tectonic plates spread apart. The orientation and extent of the bands can reveal how tectonic plates have moved over time. Abyssal hills also interact with tides and deep ocean currents in ways that researchers don’t fully understand yet.
The researchers have extracted nearly all the information on seafloor features they expected to find in the SWOT measurements. Now they’re focusing on refining their picture of the ocean floor by calculating the depth of the features they see. The work complements an effort by the international scientific community to map the entire seafloor using ship-based sonar by 2030. “We won’t get the full ship-based mapping done by then,” said Sandwell. “But SWOT will help us fill it in, getting us close to achieving the 2030 objective.”
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-040
Share
Details
Last Updated Mar 19, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Earth Jet Propulsion Laboratory Oceans Explore More
6 min read ESA Previews Euclid Mission’s Deep View of ‘Dark Universe’
Article 9 hours ago 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
Article 1 day ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.