Jump to content

Air pollution returning to pre-COVID levels


Recommended Posts

Nitrogen dioxide concentrations over China

In early 2020, data from satellites were used to show a decline in air pollution coinciding with nationwide lockdowns put in place to stop the spread of COVID-19. One year later, as lockdown restrictions loosen in some countries and regular activity resumes, nitrogen dioxide levels are bouncing back to pre-COVID levels.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Urban air mobility means a safe and efficient system for vehicles, piloted or not, to move passengers and cargo within a city.NASA As the aviation industry evolves, new air vehicles and operators are entering the airspace. NASA is working to ensure these new diverse set of operations can be safely integrated into the current airspace. The agency is researching how traditional and emerging aircraft operations can efficiently operate in a shared airspace.
      NASA’s Air Traffic Management-eXploration (ATM-X) project is a holistic approach to advancing a digital aviation ecosystem through research, development and testing. To accommodate the growing complexity and scale of new operations in Advanced Air Mobility (AAM), ATM-X leverages technologies that contribute to transforming the national airspace, improving airspace access, and making operations safer and more efficient for all users.
      ATM-X fosters access to data by enhancing the availability of digital information and predictive services – including flight traffic predictions – for airspace operations.
      ATM-X works closely with the Federal Aviation Administration (FAA), commercial partners, industry experts, and stakeholders in evaluating the sustainable impacts of emerging mobility solutions. ATM-X is conducting research to augment current key stakeholders that enable safe operations today such as pilots and air traffic controllers. Through these cooperations, ATM-X researches and validates technological advances in computing, communications, and increasingly automated technologies to support the continued evolution of aviation operations.
      ATM-X supports the modernization of today’s air transportation system through a diverse portfolio of core capabilities, which include remotely supervised missions up through high-altitude operations. The four research subprojects under ATM-X work collaboratively to enable a robust transformation of the National Airspace System (NAS).
      NASA/Maria Werries Unmanned Aircraft System Traffic Management Beyond-Visual-Line-of Sight (UTM-BVLOS) 

      UTM BVLOS is supporting the future of aviation by operationalizing UTM for safe use of drones in our everyday lives. UTM BVLOS is part of a new traffic management paradigm called Extensible Traffic Management (xTM) that will use digital information exchange, cooperative operating practices, and automation to provide air traffic management for remotely piloted operations for small UAS beyond an operator’s visual line of sight. This project focuses on enabling operations in a low- altitude airspace, including drone package delivery and public safety operations. 
      As the FAA works to authorize these types of flights, NASA’s UTM BVLOS team is working with industry to ensure these operations can be routine, safe, and efficient. One such effort is the industry-driven “Key Site Operational Evaluation” out of North Texas, where UTM BVLOS is helping to test UTM tools and services in an operational context.  
      Digital Information Platform (DIP)
      DIP is focused on increasing access to digital information to enable increasingly sustainable and efficient operations for today and future airspace systems. DIP is prototyping a digital service-oriented framework that uses machine learning to provide information, including traffic predictions, weather information, and in-time flight trajectory updates. DIP tests and validates key services for end-to-end trajectory planning and surface operations. 
      DIP is engaging with the FAA, industry, flight operators, and relevant stakeholders, in a series of Sustainable Flight National Partnership – Operations demonstrations to support the United States Climate Action Plan objective of net-zero emissions by 2050. Through these types of collaborations, DIP tests and validates key services and capabilities for end-to-end trajectory planning and surface operations.
      Pathfinding for Airspace with Autonomous Vehicles (PAAV)  
      PAAV is focused on enabling remotely piloted operations in today’s airspace, which includes assessing increasingly automated capabilities to allow safe operations across all phases of flight.
      PAAV is working with key stakeholders, including the FAA, industry standards organizations, and industry partners to develop an ecosystem which helps validate standards, concepts, procedures, and technology. This research will help test and validate a broad range of tools and services that could provide critical information and functions necessary for remotely piloted operations at lower complexity airspace shared with conventional aircrafts. This includes ground-based surveillance to detect and avoid hazards, command and control communications, and relevant weather information, which is critical for safe, seamless, and scalable UAS cargo operations.  
      NAS Exploratory Concepts & Technologies (NExCT)
      Advancements in aircraft design, power, and propulsion systems are enabling high-altitude long-endurance vehicles, such as balloons, airships, and solar aircraft to operate at altitudes of 60,000 feet and above. This airspace is referred to as “Upper Class E” airspace in the United States, or ETM. These advancements open doors to benefits ranging from increased internet coverage, improved disaster response, expanded scientific missions, to even supersonic flight. To accommodate and foster this growth, NExCT is developing a new traffic management concept in this airspace.  
      NExCT is working with the FAA and industry partners to extend a new concept for safely integrating and scaling air traffic across UTM, UAM, and ETM, collectively referenced as the Extensible Traffic Management (xTM) domain. Together, this research project will enable, test, and validate a common xTM framework that is efficient and safe.  
      ATM-X
      AOSP
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators 
      Article 2 weeks ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Solar System Overview The solar system has one star, eight planets, five officially named dwarf planets, hundreds of moons, thousands…
      Explore NASA’s History
      Share
      Details
      Last Updated Sep 11, 2024 EditorJim BankeContactHillary Smithhillary.smith@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Air Traffic Management – Exploration View the full article
    • By Space Force
      History was made on Aug. 16, as six Space Force students out of basic military training became the first Guardians to graduate technical training at the U.S. Air Force Honor Guard at Joint Base Anacostia-Bolling.

      View the full article
    • By NASA
      Learn Home New TEMPO Cosmic Data Story… Astrophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   3 min read
      New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available
      On May 30th, 2024, NASA and the Center for Astrophysics | Harvard & Smithsonian announced the public release of “high-quality, near real-time air quality data” from NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. The NASA Science Activation program’s Cosmic Data Stories team, led by Harvard University in Cambridge, MA, has since released a new “Data Story” – an interactive, digital showcase of new science imagery, including ideas for exploration and scientific highlights shared in a brief video and narrative text – that provides a quick and easy way for the public to visualize this important, large data set from TEMPO.
      TEMPO allows unprecedented monitoring of air quality down to neighborhood scales, with its hourly daytime scans over North America. Air pollutants like NO2, produced, for example, by the burning of fossil fuels, can trigger significant health issues, especially among people with pre-existing illnesses such as asthma. The interactive views in the TEMPO Data Story provide public access to the same authentic data that scientists use and invite the public to explore patterns in their local air quality. For example, how do NO2 emissions vary in our area throughout the day and week? What are possible sources of NO2 in our community? How does our air quality compare with that of other communities with similar population densities, or with nearby urban or rural communities? TEMPO’s hyper-localized data will allow communities to make informed decisions and take action to improve their air quality.
      The Cosmic Data Story team is grateful to TEMPO scientists, Xiong Liu and Caroline Nowlan, for providing the team with early access to the data and guidance on NO2 phenomena that learners can explore in the data. The TEMPO Data Story, featured on TEMPO’s webpage for the public, adds Earth science data to the portfolio of Cosmic Data Stories that is already making astrophysics data accessible to the public.
      TEMPO Team Atmospheric Physicist from the Harvard-Smithsonian Center for Astrophysics, Caroline Nowlan, had this to say: “TEMPO produces data that are really useful for scientists, but are also important for the general public and policy makers. We are thrilled that the Cosmic Data Stories team has made a tool that allows everyone to explore TEMPO data and learn about pollution across North America and in their own communities.”
      The Cosmic Data Stories project is supported by NASA under cooperative agreement award number 80NSSC21M0002 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A view from the TEMPO Data Story, shows TEMPO’s NO2 data overlaid on a map of North America. A large plume of NO2, caused by large wildfires, arcs from Northern California all the way to Idaho. Other “hot spots” of NO2 are seen over cities across the US, Canada, and Mexico. Users can view any available date, as well as explore some featured dates and locations that describe phenomena of interest that are visible in the data. Share








      Details
      Last Updated Aug 13, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Earth Science Science Activation Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
      3 min read Earth Educators Rendezvous with Infiniscope and Tour It


      Article


      1 day ago
      2 min read Astro Campers SCoPE Out New Worlds


      Article


      4 days ago
      2 min read Hubble Spotlights a Supernova


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      A proposal entitled, “TEMPO-EMIT synergy: Enhancing applications of GHG (greenhouse gas) and air pollutant observations over key emission sources,” was selected for funding through a NASA cross-mission product opportunity. The project, co-led by Aaron Naeger at SPoRT, will integrate the complementary air pollutant and GHG data from the NASA TEMPO and EMIT missions for designing a TEMPO-EMIT merged product concept, which aims to facilitate assessments of GHG and co-pollutant emissions from key source regions in the U.S. The focus of this project will be on the oil and gas operations in the Permian Basin where recent data have indicated strong nitrogen dioxide and methane emissions from the facilities. The National Park Service and air agencies have a high-level of interest in better understanding emissions from these facilities for improving air quality management in the region.
      View the full article
    • By NASA
      4 Min Read NASA, EPA Tackle NO2 Air Pollution in Overburdened Communities
      This map shows average concentrations of nitrogen dioxide for 2022 over the U.S., as detected by the Ozone Monitoring Instrument on NASA’s Aura satellite. Higher concentrations are in red and purple. Lower concentrations are in blue. Credits:
      NASA’s Scientific Visualization Studio Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers For the first time, NASA data about nitrogen dioxide (NO2), a harmful air pollutant, is available in the Environmental Protection Agency’s (EPA) widely used Environmental Justice Screening and Mapping Tool (EJScreen). This update marks a crucial step in addressing air quality disparities in overburdened communities across the United States.
      “Having access to this accurate and localized NO2 data allows organizations like ours to understand the air quality challenges we encounter, and to advocate more effectively for the health and well-being of community residents,” said Samuel Jordan, president of the Baltimore Transit Equity Coalition.
      Previously, EJScreen included data on ozone, fine particulate matter, and various other environmental hazards. But it lacked information on NO2, which has been linked to respiratory issues such as asthma, especially in children.
      “Incorporating NO2 data into EJScreen is a testament to how NASA’s Earth science capabilities can be applied to address crucial societal challenges,” said John Haynes, NASA’s program manager for Health and Air Quality. “This collaboration with the EPA underscores our commitment to using space-based observations to benefit public health and environmental justice.”
      NO2 is emitted by burning fossil fuels and contributes to the formation of surface ozone. Communities of color and lower-income populations often live closer to highways, factories, transportation hubs, and other NO2 sources than their wealthier counterparts. As a result, residents are exposed to higher levels of this air pollutant and others, exacerbating health inequalities.
      For example, a new NASA-funded study used satellite data and other information to show that nearly 150,000 warehouses in the U.S. increase local NO2 levels and are predominantly located in marginalized communities. The findings reveal a 20% increase, on average, in near-warehouse NO2, linked to truck traffic and warehouse density.
      “NO2 is very short-lived in the air, and so its levels are high in the area where it is emitted,” said Gaige Kerr, study coauthor and an air pollution researcher at George Washington University in Washington, who was involved in incorporating NASA’s NO2 data into EJScreen. “This tool democratizes access to high-quality NO2 data, allowing individuals without a background in data analysis or data visualization to access and understand the information easily.”
      EJScreen uses data from the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite and computer models to provide average annual NO2estimates at the census block level, revealing the amount of chronic surface-level NO2 that people may be exposed to in their neighborhoods.
      “Satellite data has the potential to transform the measurement of certain environmental and climate factors,” said Tai Lung, an environmental protection specialist with EPA and EJScreen lead. “The consistency of NASA’s NO2 data for every corner of the U.S. makes it tremendously valuable for screening and mapping of disproportionate impacts in communities.”
      The dataset was developed with contributions from George Washington University, the University of Washington School of Medicine in Seattle, and Oregon State University in Corvallis. The data integration was made possible through a NASA grant to the Satellite Data for Environmental Justice Tiger Team (part of NASA’s Health and Air Quality Applied Sciences Team), which worked closely with the EPA to ensure the data’s accuracy and relevance.
      NASA uses a variety of instruments on satellites, aircraft, and ground stations to continually gather data on key air pollutants. Scientists supported by NASA and other researchers monitor the origins, levels, and atmospheric movement of these pollutants. Their research offers crucial Earth-observation data that can guide air quality standards, shape public policies, and inform government regulations, ultimately aiming to enhance economic and human welfare.
      The Aura satellite recently celebrated its 20-year anniversary. In the future, Kerr said, the team could explore using NO2 data from NASA’s new TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument on the Intelsat commercial satellite.
      TEMPO launched in 2023 and offers hourly daytime measurements, rather than OMI’s once-daily measurements. This capability could further enhance the EPA tool, providing insight on pollution levels throughout the day and supporting proactive air pollution management.
      By Emily DeMarco
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Aug 05, 2024 Editor Rob Garner Contact Emily DeMarco emily.p.demarco@nasa.gov Location Goddard Space Flight Center Related Terms
      Applied Sciences Program Earth Earth Science Division Earth’s Atmosphere Goddard Space Flight Center Human Dimensions Explore More
      2 min read NASA-Led Mission to Map Air Pollution Over Both U.S. Coasts
      This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia,…


      Article


      2 months ago
      4 min read NASA Scientists Take to the Seas to Study Air Quality
      Satellites continuously peer down from orbit to take measurements of Earth, and this week a…


      Article


      2 months ago
      10 min read A Tale of Three Pollutants
      Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A…


      Article


      10 months ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Air Quality


      Air pollution is a significant threat to human health and our environment. Instruments on NASA satellites, along with airborne and…


      TEMPO


      TEMPO, or Tropospheric Emissions: Monitoring of Pollution, is the first space-based instrument to continuously measure air quality above North America…


      Explore Earth Science


      View the full article
  • Check out these Videos

×
×
  • Create New...