Jump to content

This is ESA now also available in Irish and Russian!


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 5 min read
      Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!
      In celebration of ChemCam’s milestone, here is a stunning image from its remote micro imager, showing details in the landscape far away. This image was taken by Chemistry & Camera (ChemCam) onboard NASA’s Mars rover Curiosity on Sol 4302 — Martian day 4,302 of the Mars Science Laboratory mission — on Sept. 12, 2024, at 09:20:51 UTC. NASA/JPL-Caltech Earth planning date: Friday, Sept. 13, 2024
      Today, I need to talk about ChemCam, our laser and imaging instrument on the top of Curiosity’s mast. It one of the instruments in the “head” that gives Curiosity that cute look as if it were looking around tilting its head down to the rocks at the rover’s wheels. On Monday, 19th August the ChemCam team at CNES in France planned the 1 millionth shot and Curiosity executed it on the target Royce Lake on sol 4281 on Mars. Even as an Earth scientist used to really big numbers, this is a huge number that took me a while to fully comprehend. 1 000 000 shots! Congratulations, ChemCam, our champion for getting chemistry from a distance – and high-resolution images, too. If you are now curious how Curiosity’s ChemCam instrument works, here is the NASA fact sheet. And, of course, the team is celebrating, which is expressed by those two press releases, one from CNES in France and one from Los Alamos National Laboratory, the two institutions who collaborated to develop and build ChemCam and are now running the instrument for over 12 years! And the PI, Dr Nina Lanza from Los Alamos informs me that the first milestone – 10000 shots was reached as early as Sol 42, which was the sol the DAN instrument used its active mode for the first time. But before I am getting melancholic, let’s talk about today’s plan!
      The drive ended fairly high up in the terrain, and that means we see a lot of the interesting features in the channel and generally around us. So, we are on a spot a human hiker would probably put the backpack down, take the water bottle out and sit down with a snack to enjoy the view from a nice high point in the landscape. Well, no such pleasures for Curiosity – and I am pretty sure sugar, which we humans love so much, wouldn’t be appreciated by rover gears anyway. So, let’s just take in the views! And that keeps Mastcam busy taking full advantage of our current vantage point. We have a terrain with lots of variety in front of us, blocks, boulders, flatter areas and the walls are layered, beautiful geology. Overall there are 11 Mastcam observations in the plan adding up to just about 100 individual frames, not counting those taken in the context of atmospheric observations, which are of course also in the plan. The biggest mosaics are on the targets “Western Deposit,” “Balloon Dome,” and “Coral Meadow.” Some smaller documentation images are on the targets “Wales Lake,” “Gnat Meadow,” and “Pig Chute.”
      ChemCam didn’t have long to dwell on its milestone, as it’s busy again today. Of course, it will join Mastcam in taking advantage of our vantage point, taking three remote micro imager images on the landscape around us. LIBS chemistry investigations are targeting “Wales Lake,” “Gnat Meadow,” and “Pig Chute.” APXS is investigating two targets, “College Rock” and “Wales Lake,” which will also come with MAHLI documentation. With all those investigations together, we’ll be able to document the chemistry of many targets around us. There is such a rich variety of dark and light toned rocks, and with so much variety everywhere, it’s hard to choose and the team is excited about the three targeted sols … and planning over 4 hours of science over the weekend!
      The next drive is planned to go to an area where there is a step in the landscape. Geologists love those steps as they give insights into the layers below the immediate surface. If you have read the word ‘outcrop’ here, then that’s what that means: access to below the surface. But there are also other interesting features in the area, hence we will certainly have an interesting workspace to look at! But getting there will not be easy as the terrain is very complex, so we cannot do it in just one drive. I think there is a rule of thumb here: the more excited the geo-team gets, the more skills our drivers need. Geologists just love rocks, but of course, no one likes driving offroad in a really rocky terrain – no roads on Mars. And right now, our excellent engineers have an extra complication to think about: they need to take extra care where and how to park so Curiosity can actually communicate with Earth. Why? Well, we are in a canyon, and those of you liking to hike, know what canyons mean for cell phone signals… yes, there isn’t much coverage, and that’s the same for Curiosity’s antenna. This new NASA video has more information and insights into the planning room, too! So, we’ll drive halfway to where we want to be but I am sure there will be interesting targets in the new workspace, the area is just so, so complex, fascinating and rich!
      And that’s after Mars for you, after 12 years, 42 drill holes, and now 1 Million ChemCam shots. Go Curiosity go!!!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 hours ago
      2 min read Margin’ up the Crater Rim!


      Article


      3 days ago
      3 min read Sols 4300-4301: Rippled Pages


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy
      Since the 1960s, astronomers have wondered how the Sun’s supersonic “solar wind,” a stream of energetic particles that flows out into the solar system, continues to receive energy once it leaves the Sun. Now, thanks to a lucky lineup of a NASA and an ESA (European Space Agency)/NASA spacecraft both currently studying the Sun, they may have discovered the answer — knowledge that is a crucial piece of the puzzle to help scientists better forecast solar activity between the Sun and Earth.
      A paper published in the Aug. 30, 2024, issue of the journal Science provides persuasive evidence that the fastest solar winds are powered by magnetic “switchbacks,” or large kinks in the magnetic field, near the Sun.
      “Our study addresses a huge open question about how the solar wind is energized and helps us understand how the Sun affects its environment and, ultimately, the Earth,” said Yeimy Rivera, co-leader of the study and a postdoctoral fellow at the Smithsonian Astrophysical Observatory, part of Center for Astrophysics | Harvard & Smithsonian. “If this process happens in our local star, it’s highly likely that this powers winds from other stars across the Milky Way galaxy and beyond and could have implications for the habitability of exoplanets.”
      This artist’s concept shows switchbacks, or large kinks in the Sun’s magnetic field. NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez Previously, NASA’s Parker Solar Probe found that these switchbacks were common throughout the solar wind. Parker, which became the first craft to enter the Sun’s magnetic atmosphere in 2021, allowed scientists to determine that switchbacks become more distinct and more powerful close to the Sun. Up to now, however, scientists lacked experimental evidence that this interesting phenomenon actually deposits enough energy to be important in the solar wind.
      “About three years ago, I was giving a talk about how fascinating these waves are,” said co-author Mike Stevens, astrophysicist at the Center for Astrophysics. “At the end, an astronomy professor stood up and said, ‘that’s neat, but do they actually matter?’”
      To answer this, the team of scientists had to use two different spacecraft. Parker is built to fly through the Sun’s atmosphere, or “corona.” ESA’s and NASA’s Solar Orbiter mission is also on an orbit that takes it relatively close to the Sun, and it measures solar wind at larger distances. 
      The discovery was made possible because of a coincidental alignment in February 2022 that allowed both Parker Solar Probe and Solar Orbiter to measure the same solar wind stream within two days of each other. Solar Orbiter was almost halfway to the Sun while Parker was skirting the edge of the Sun’s magnetic atmosphere.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith An artist’s concept shows Solar Orbiter near the Sun. NASA’s Goddard Space Flight Center Conceptual Image Lab




      “We didn’t initially realize that Parker and Solar Orbiter were measuring the same thing at all. Parker saw this slower plasma near the Sun that was full of switchback waves, and then Solar Orbiter recorded a fast stream which had received heat and with very little wave activity,” said Samuel Badman, astrophysicist at the Center for Astrophysics and the other co-lead of the study. “When we connected the two, that was a real eureka moment.”
      Scientists have long known that energy is moved throughout the Sun‘s corona and the solar wind, at least in part, through what are known as “Alfvén waves.” These waves transport energy through a plasma, the superheated state of matter that makes up the solar wind.
      However, how much the Alfvén waves evolve and interact with the solar wind between the Sun and Earth couldn’t be measured — until these two missions were sent closer to the Sun than ever before, at the same time. Now, scientists can directly determine how much energy is stored in the magnetic and velocity fluctuations of these waves near the corona, and how much less energy is carried by the waves farther from the Sun.
      The new research shows that the Alfvén waves in the form of switchbacks provide enough energy to account for the heating and acceleration documented in the faster stream of the solar wind as it flows away from the Sun. 
      “It took over half a century to confirm that Alfvenic wave acceleration and heating are important processes, and they happen in approximately the way we think they do,” said John Belcher, emeritus professor from the Massachusetts Institute of Technology who co-discovered Alfvén waves in the solar wind but was not involved in this study.
      In addition to helping scientists better forecast solar activity and space weather, such information helps us understand mysteries of the universe elsewhere and how Sun-like stars and stellar winds operate everywhere.
      “This discovery is one of the key puzzle pieces to answer the 50-year-old question of how the solar wind is accelerated and heated in the innermost portions of the heliosphere, bringing us closer to closure to one of the main science objectives of the Parker Solar Probe mission,” said Adam Szabo, Parker Solar Probe mission science lead at NASA.
      By Megan Watzke
      Center for Astrophysics | Harvard & Smithsonian
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Orbiter Solar Science Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Zooms into the Rosy Tendrils of Andromeda


      Article


      2 hours ago
      2 min read Hubble Observes An Oddly Organized Satellite


      Article


      1 day ago
      6 min read NASA Discovers a Long-Sought Global Electric Field on Earth
      An international team of scientists has successfully measured a planet-wide electric field thought to be…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Discover where space begins: the guide to ESA’s establishments

      View the full article
    • By European Space Agency
      This is ESA: your perfect introduction to what Europe does in space

      View the full article
  • Check out these Videos

×
×
  • Create New...