Members Can Post Anonymously On This Site
Antarctica’s magnetic link to ancient neighbours
-
Similar Topics
-
By NASA
5 Min Read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora
High above Earth’s poles, intense electrical currents called electrojets flow through the upper atmosphere when auroras glow in the sky. These auroral electrojets push about a million amps of electrical charge around the poles every second. They can create some of the largest magnetic disturbances on the ground, and rapid changes in the currents can lead to effects such as power outages. In March, NASA plans to launch its EZIE (Electrojet Zeeman Imaging Explorer) mission to learn more about these powerful currents, in the hopes of ultimately mitigating the effects of such space weather for humans on Earth.
Results from EZIE will help NASA better understand the dynamics of the Earth-Sun connection and help improve predictions of hazardous space weather that can harm astronauts, interfere with satellites, and trigger power outages.
The EZIE mission includes three CubeSats, each about the size of a carry-on suitcase. These small satellites will fly in a pearls-on-a-string formation, following each other as they orbit Earth from pole to pole about 350 miles (550 kilometers) overhead. The spacecraft will look down toward the electrojets, which flow about 60 miles (100 kilometers) above the ground in an electrified layer of Earth’s atmosphere called the ionosphere.
During every orbit, each EZIE spacecraft will map the electrojets to uncover their structure and evolution. The spacecraft will fly over the same region 2 to 10 minutes apart from one another, revealing how the electrojets change.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will use three CubeSats to map Earth’s auroral electrojets — intense electric currents that flow high above Earth’s polar regions when auroras glow in the sky. As the trio orbits Earth, each satellite will use four dishes pointed at different angles to measure magnetic fields created by the electrojets. NASA/Johns Hopkins APL/Steve Gribben Previous ground-based experiments and spacecraft have observed auroral electrojets, which are a small part of a vast electric circuit that extends 100,000 miles (160,000 kilometers) from Earth to space. But for decades, scientists have debated what the overall system looks like and how it evolves. The mission team expects EZIE to resolve that debate.
“What EZIE does is unique,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE is the first mission dedicated exclusively to studying the electrojets, and it does so with a completely new measurement technique.”
EZIE is the first mission dedicated exclusively to studying the electrojets.
Larry Kepko
EZIE mission scientist, NASA’s Goddard Space Flight Center
This technique involves looking at microwave emission from oxygen molecules about 10 miles (16 kilometers) below the electrojets. Normally, oxygen molecules emit microwaves at a frequency of 118 Gigahertz. However, the electrojets create a magnetic field that can split apart that 118 Gigahertz emission line in a process called Zeeman splitting. The stronger the magnetic field, the farther apart the line is split.
Each of the three EZIE spacecraft will carry an instrument called the Microwave Electrojet Magnetogram to observe the Zeeman effect and measure the strength and direction of the electrojets’ magnetic fields. Built by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, each of these instruments will use four antennas pointed at different angles to survey the magnetic fields along four different tracks as EZIE orbits.
The technology used in the Microwave Electrojet Magnetograms was originally developed to study Earth’s atmosphere and weather systems. Engineers at JPL had reduced the size of the radio detectors so they could fit on small satellites, including NASA’s TEMPEST-D and CubeRRT missions, and improved the components that separate light into specific wavelengths.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will investigate Earth’s auroral electrojets, which flow high above Earth’s polar regions when auroras (northern and southern lights) glow. By providing unprecedented measurements of these electrical currents, EZIE will answer decades-old mysteries. Understanding these currents will also improve scientists’ capabilities for predicting hazardous space weather. NASA/Johns Hopkins APL The electrojets flow through a region that is difficult to study directly, as it’s too high for scientific balloons to reach but too low for satellites to dwell.
“The utilization of the Zeeman technique to remotely map current-induced magnetic fields is really a game-changing approach to get these measurements at an altitude that is notoriously difficult to measure,” said Sam Yee, EZIE’s principal investigator at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.
The mission is also including citizen scientists to enhance its research, distributing dozens of EZIE-Mag magnetometer kits to students in the U.S. and volunteers around the world to compare EZIE’s observations to those from Earth. “EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground,” said Nelli Mosavi-Hoyer, EZIE project manager at APL.
EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground.
Nelli Mosavi-Hoyer
EZIE project manager, Johns Hopkins Applied Physics Laboratory
The EZIE spacecraft will launch aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California as part of the Transporter-13 rideshare mission with SpaceX via launch integrator Maverick Space Systems.
The mission will launch during what’s known as solar maximum — a phase during the 11-year solar cycle when the Sun’s activity is stronger and more frequent. This is an advantage for EZIE’s science.
“It’s better to launch during solar max,” Kepko said. “The electrojets respond directly to solar activity.”
The EZIE mission will also work alongside other NASA heliophysics missions, including PUNCH (Polarimeter to Unify the Corona and Heliosphere), launching in late February to study how material in the Sun’s outer atmosphere becomes the solar wind.
According to Yee, EZIE’s CubeSat mission not only allows scientists to address compelling questions that have not been able to answer for decades but also demonstrates that great science can be achieved cost-effectively.
“We’re leveraging the new capability of CubeSats,” Kepko added. “This is a mission that couldn’t have flown a decade ago. It’s pushing the envelope of what is possible, all on a small satellite. It’s exciting to think about what we will discover.”
The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. APL leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats.
by Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept shows the three EZIE satellites orbiting Earth.
Credits: NASA/Johns Hopkins APL/Steve Gribben
Share
Details
Last Updated Feb 25, 2025 Related Terms
Heliophysics Auroras EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Missions Small Satellite Missions The Sun Explore More
6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Article
4 days ago
2 min read Hubble Spies a Spiral That May Be Hiding an Imposter
Article
4 days ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA/Matthew Dominick NASA astronaut Matthew Dominick captured this timelapse photo of Comet C/2023 A3 (Tsuchinshan-ATLAS) International Space Station as it orbited 272 miles above the South Pacific Ocean southeast of New Zealand just before sunrise on Sept. 28, 2024. At the time, the comet was about 44 million miles away from Earth.
Though the comet is very old, it was just discovered in 2023, when it approached the inner solar system on its highly elliptical orbit for the first time in documented human history. Beginning in mid-October 2024, Comet C/2023 A3 (Tsuchinshan-ATLAS) will become visible low in the west following sunset. If the comet’s tail is well-illuminated by sunlight, it could be visible to the unaided eye. Oct. 14-24 is the best time to observe, using binoculars or a small telescope.
The comet hails from the Oort Cloud, which scientists think is a giant spherical shell surrounding our solar system. It is like a big, thick-walled bubble made of icy pieces of space debris the sizes of mountains and sometimes larger. The Oort Cloud lies far beyond Pluto and the most distant edges of the Kuiper Belt and may contain billions, or even trillions, of objects.
Image Credit: NASA/Matthew Dominick
View the full article
-
By European Space Agency
Video: 00:01:20 Approximately 41 000 years ago, Earth’s magnetic field briefly reversed during what is known as the Laschamp event. During this time, Earth’s magnetic field weakened significantly—dropping to a minimum of 5% of its current strength—which allowed more cosmic rays to reach Earth’s atmosphere.
Scientists at the Technical University of Denmark and the German Research Centre for Geosciences used data from ESA’s Swarm mission, along with other sources, to create a sounded visualisation of the Laschamp event. They mapped the movement of Earth’s magnetic field lines during the event and created a stereo sound version which is what you can hear in the video.
The soundscape was made using recordings of natural noises like wood creaking and rocks falling, blending them into familiar and strange, almost alien-like, sounds. The process of transforming the sounds with data is similar to composing music from a score.
Data from ESA’s Swarm constellation are being used to better understand how Earth’s magnetic field is generated. The satellites measure magnetic signals not only from the core, but also from the mantle, crust, oceans and up to the ionosphere and magnetosphere. These data are crucial for studying phenomena such as geomagnetic reversals and Earth’s internal dynamics.
The sound of Earth’s magnetic field, the first version of the magnetic field sonification produced with Swarm data, was originally played through a 32-speaker system set up in a public square in Copenhagen, with each speaker representing changes in the magnetic field at different places around the world over the past 100 000 years.
View the full article
-
By European Space Agency
As BepiColombo sped past Mercury during its June 2023 flyby, it encountered a variety of features in the tiny planet’s magnetic field. These measurements provide a tantalising taste of the mysteries that the mission is set to investigate when it arrives in orbit around the Solar System’s innermost planet.
View the full article
-
By European Space Agency
Looking deep into the early Universe with the NASA/ESA/CSA James Webb Space Telescope, astronomers have found something unprecedented: a galaxy with an odd light signature, which they attribute to its gas outshining its stars.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.