Members Can Post Anonymously On This Site
What telescope do you have or want?
-
Similar Topics
-
By NASA
Explore This SectionWebb NewsLatest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) OverviewAbout Who is James Webb? Fact Sheet Impacts+Benefits FAQ ScienceOverview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds ObservatoryOverview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module MultimediaAbout Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications TeamInternational Team People Of Webb MoreFor the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Telescope Unmasks True Nature of the Cosmic Tornado
NASA’s James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light. Credits: NASA, ESA, CSA, STScI Craving an ice cream sundae with a cherry on top? This random alignment of Herbig-Haro 49/50 — a frothy-looking outflow from a nearby protostar — with a multi-hued spiral galaxy may do the trick. This new composite image combining observations from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) provides a high-resolution view to explore the exquisite details of this bubbling activity.
Herbig-Haro objects are outflows produced by jets launched from a nearby, forming star. The outflows, which can extend for light-years, plow into a denser region of material. This creates shock waves, heating the material to higher temperatures. The material then cools by emitting light at visible and infrared wavelengths.
Image A:
Herbig-Haro 49/50 (NIRCam and MIRI Image)
NASA’s James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. Like the wake of a speeding boat, the bow shocks in this image have an arc-like appearance as the fast-moving jet from the young star slams into the surrounding dust and gas. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object with a more distant spiral galaxy in the background. Herbig-Haro 49/50 gives researchers insights into the early phases of the formation of low-mass stars similar to our own Sun. In this Webb image, blue represents light at 2.0-microns (F200W), cyan represents light at 3.3-microns (F335M), green is 4.4-microns (F444W), orange is 4.7-microns (F470N), and red is 7.7-microns (F770W).NASA, ESA, CSA, STScI When NASA’s retired Spitzer Space Telescope observed it in 2006, scientists nicknamed Herbig-Haro 49/50 (HH 49/50) the “Cosmic Tornado” for its helical appearance, but they were uncertain about the nature of the fuzzy object at the tip of the “tornado.” With its higher imaging resolution, Webb provides a different visual impression of HH 49/50 by revealing fine features of the shocked regions in the outflow, uncovering the fuzzy object to be a distant spiral galaxy, and displaying a sea of distant background galaxies.
Image B:
Herbig-Haro 49/50 (Spitzer and Webb Images Side-by-Side)
This side-by-side comparison shows a Spitzer Space Telescope Infrared Array Camera image of HH 49/50 (left) versus a Webb image of the same object (right) using the NIRCam (Near-infrared Camera) instrument and MIRI (Mid-infrared Instrument). The Webb image shows intricate details of the heated gas and dust as the protostellar jet slams into the material. Webb also resolves the “fuzzy” object located at the tip of the outflow into a distant spiral galaxy. The Spitzer image shows 3.6-micron light in blue, the 4.5-micron in green, and the 8.0-micron in red (IRAC1, IRAC2, IRAC4). In the Webb image, blue represents light at 2.0-microns (F200W), cyan represents light at 3.3-microns (F335M), green is 4.4-microns (F444W), orange is 4.7-microns (F470N), and red is 7.7-microns (F770W).NASA, ESA, CSA, STScI, NASA-JPL, SSC HH 49/50 is located in the Chamaeleon I Cloud complex , one of the nearest active star formation regions in our Milky Way, which is creating numerous low-mass stars similar to our Sun. This cloud complex is likely similar to the environment that our Sun formed in. Past observations of this region show that the HH 49/50 outflow is moving away from us at speeds of 60-190 miles per second (100-300 kilometers per second) and is just one feature of a larger outflow.
Webb’s NIRCam and MIRI observations of HH 49/50 trace the location of glowing hydrogen molecules, carbon monoxide molecules, and energized grains of dust, represented in orange and red, as the protostellar jet slams into the region. Webb’s observations probe details on small spatial scales that will help astronomers to model the properties of the jet and understand how it is affecting the surrounding material.
The arc-shaped features in HH 49/50, similar to a water wake created by a speeding boat, point back to the source of this outflow. Based on past observations, scientists suspect that a protostar known as Cederblad 110 IRS4 is a plausible driver of the jet activity. Located roughly 1.5 light-years away from HH 49/50 (off the lower right corner of the Webb image), CED 110 IRS4 is a Class I protostar. Class I protostars are young objects (tens of thousands to a million years old) in the prime time of gaining mass. They usually have a discernable disk of material surrounding them that is still falling onto the protostar. Scientists recently used Webb’s NIRCam and MIRI observations to study this protostar and obtain an inventory of the icy composition of its environment.
These detailed Webb images of the arcs in HH 49/50 can more precisely pinpoint the direction to the jet source, but not every arc points back in the same direction. For example, there is an unusual outcrop feature (at the top right of the main outflow) which could be another chance superposition of a different outflow, related to the slow precession of the intermittent jet source. Alternatively, this feature could be a result of the main outflow breaking apart.
The galaxy that appears by happenstance at the tip of HH 49/50 is a much more distant, face-on spiral galaxy. It has a prominent central bulge represented in blue that shows the location of older stars. The bulge also shows hints of “side lobes” suggesting that this could be a barred-spiral galaxy. Reddish clumps within the spiral arms show the locations of warm dust and groups of forming stars. The galaxy even displays evacuated bubbles in these dusty regions, similar to nearby galaxies observed by Webb as part of the PHANGS program.
Webb has captured these two unassociated objects in a lucky alignment. Over thousands of years, the edge of HH 49/50 will move outwards and eventually appear to cover up the distant galaxy.
Want more? Take a closer look at the image, “fly through” it in a visualization, and compare Webb’s image to the Spitzer Space Telescope’s.
Herbig-Haro 49/50 is located about 625 light-years from Earth in the constellation Chamaeleon.
The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Quyen Hart – qhart@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Images – Webb images of other protostar outflows – L483, HH 46/47, and HH 211
Animation Video – “Exploring Star and Planet Formation”
Interactive – Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive
Article – Read more about Herbig-Haro objects
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Galaxies
Universe
Share
Details
Last Updated Mar 23, 2025 EditorStephen SabiaContactLaura Betzlaura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars Stellar Evolution The Universe View the full article
-
By Amazing Space
Stunning Solar Prominences Captured with LUNT LS50THa Telescope | H-alpha Solar Observation
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Ahead of launch, NASA’s SPHEREx is enclosed in a payload fairing at Vandenberg Space Force Base on March 2. The observatory is stacked atop the four small satellites that make up the agency’s PUNCH mission.NASA/BAE Systems/Benjamin Fry NASA’s latest space observatory is targeting a March 8 liftoff, and the agency’s PUNCH heliophysics mission is sharing a ride. Here’s what to expect during launch and beyond.
In a little over a day, NASA’s SPHEREx space telescope is slated to launch from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. The observatory will map the entire celestial sky four times in two years, creating a 3D map of over 450 million galaxies. In doing so, the mission will provide insight into what happened a fraction of a second after the big bang, in addition to searching interstellar dust for the ingredients of life, and measuring the collective glow from all galaxies, including ones that other telescopes cannot easily detect.
The launch window opens at 7:09:56 p.m. PST on Saturday, March 8, with a target launch time of 7:10:12 p.m. PST. Additional opportunities occur in the following days.
Launching together into low Earth orbit, NASA’s SPHEREx and PUNCH missions will study a range of topics from the early universe to our nearest star. NASA/JPL-Caltech Sharing a ride with SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) is NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere), a constellation of four small satellites that will map the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, the constant outflow of material from the Sun.
For the latest on PUNCH, visit the blog:
https://blogs.nasa.gov/punch
What SPHEREx Will Do
The SPHEREx observatory detects infrared light — wavelengths slightly longer than what the human eye can see that are emitted by warm objects including stars and galaxies. Using a technique called spectroscopy, SPHEREx will separate the infrared light emitted by hundreds of millions of stars and galaxies into 102 individual colors — the same way a prism splits sunlight into a rainbow. Observing those colors separately can reveal various properties of objects, including their composition and, in the case of galaxies, their distance from Earth. No other all-sky survey has performed spectroscopy in so many wavelengths and on so many sources.
The mission’s all-sky spectroscopic map can be used for a wide variety of science investigations. In particular, SPHEREx has its sights set on a phenomenon called inflation, which caused the universe to expand a trillion-trillionfold in a fraction of a second after the big bang. This nearly instantaneous event left an impression on the large-scale distribution of matter in the universe. The mission will map the distribution of more than 450 million galaxies to improve scientists’ understanding of the physics behind this extreme cosmic event.
SPHEREx Fact Sheet Additionally, the space telescope will measure the total glow from all galaxies, including ones that other telescopes cannot easily detect. When combined with studies of individual galaxies by other telescopes, the measurement of this overall glow will provide a more complete picture of how the light output from galaxies has changed over the universe’s history.
At the same time, spectroscopy will allow SPHEREx to seek out frozen water, carbon dioxide, and other key ingredients for life. The mission will provide an unprecedented survey of the location and abundance of these icy compounds in our galaxy, giving researchers better insight into the interstellar chemistry that set the stage for life.
Launch Sequence
But, first, SPHEREx has to get into space. Prelaunch testing is complete on the spacecraft’s various systems, and it’s been encapsulated in the protective nose cone, or payload fairing, atop the SpaceX Falcon 9 rocket that will get it there from Vandenberg’s Space Launch Complex-4 East.
NASA’s SPHEREx mission will lift off from Space Launch Complex-4 East at Vanden-berg Space Force Base in California aboard a SpaceX Falcon 9 rocket, just as the Sur-face Water and Ocean Topography mission, shown here, did in December 2022. NASA/Keegan Barber A little more than two minutes after the Falcon 9 lifts off, the main engine will cut off. Shortly after, the rocket’s first and second stages will separate, followed by second-stage engine start. The reusable first stage will then begin its automated boost-back burn to the launch site for a propulsive landing.
Once the rocket is out of Earth’s atmosphere, about three minutes after launch, the payload fairing that surrounds the spacecraft will separate into two halves and fall back to Earth, landing in the ocean. Roughly 41 minutes after launch, SPHEREx will separate from the rocket and start its internal systems so that it can point its solar panel to the Sun. After this happens, the spacecraft can establish communications with ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. This milestone, called acquisition of signal, should happen about three minutes after separation.
About 52 minutes after liftoff, PUNCH should separate as well from the Falcon 9.
Both spacecraft will be in a Sun-synchronous low Earth orbit, where their position relative to the Sun remains the same throughout the year. Each approximately 98-minute orbit allows the SPHEREx telescope to view a 360-degree strip of the celestial sky. As Earth’s orbit around the Sun progresses, that strip slowly advances, enabling SPHEREx to image almost the entire sky in six months. For PUNCH, the orbit provides a clear view in all directions around the Sun.
About four days after launch, SPHEREx should eject the protective cover over its telescope lens. The observatory will begin science operations a little over a month after launch, once the telescope has cooled down to its operating temperature and the mission team has completed a series of checks.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, is providing the launch service for SPHEREx and PUNCH.
For more information about the SPHEREx mission, visit:
https://www.jpl.nasa.gov/missions/spherex
More About SPHEREx
SPHEREx is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
Get the SPHEREx Press Kit How to Watch March 8 SPHEREx Launch 6 Things to Know About SPHEREx Why NASA’s SPHEREx Will Make ‘Most Colorful’ Cosmic Map Ever NASA’s SPHEREX Space Telescope Will Seek Life’s Ingredients News Media Contacts
Karen Fox / Alise Fisher
NASA Headquarters, Washington
202-358-1600 / 202-358-2546
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Calla Cofield, SPHEREx
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Sarah Frazier, PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
2025-033
Share
Details
Last Updated Mar 07, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Heliophysics Jet Propulsion Laboratory Polarimeter to Unify the Corona and Heliosphere (PUNCH) The Big Bang The Milky Way The Search for Life The Sun The Universe Explore More
5 min read NASA Webb Wows With Incredible Detail in Actively Forming Star System
High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and…
Article 6 hours ago 2 min read Hubble Spies a Spiral in the Water Snake
This NASA/ESA Hubble Space Telescope image of a vibrant spiral galaxy called NGC 5042 resides…
Article 8 hours ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The Red Planet’s iconic rusty dust has a much wetter history than previously assumed, find scientists combining European Space Agency (ESA) and NASA spacecraft data with new laboratory experiments on replica Mars dust. The results suggest that Mars rusted early in the planet’s ancient past, when liquid water was more widespread.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.