Jump to content

Recommended Posts

Posted
Media_event_Second_spaceflight_for_Saman Video: 01:17:00

Watch the replay of the briefing to media representatives to learn more about the next spaceflight of ESA astronaut Samantha Cristoforetti.

During the event, Samantha was joined by ESA Director General Josef Aschbacher,  ESA Director of Human and Robotic Exploration David Parker, and Italian space agency president Giorgio Saccoccia.

Samantha is a member of ESA’s astronaut class of 2009. During her firsission ‘Futura’ in 2014t m–15, she spent 200 days in space, carrying out science and operations on the International Space Station as a flight engineer for Expeditions 42 and 43. She now looks forward to returning to the ISS, her “home away from home.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In-person participants (L-R) – Back row: Jason Lytle, Stuart Lee, Eric Bershad, Ashot Sargsyan, Aaron Everson, Philip Wells, Sergi Vaquer Araujo, Steven Grover, John A. Heit, Mehdi Shishehbor, Laura Bostick; Middle row: Sarah Childress Taoufik, Stephan Moll, Brandon Macias, Kristin Coffey, Ann-Kathrin Vlacil, Dave Francisco; Front row: James Pavela, Doug Ebert, Kathleen McMonigal, Esther Kim, Emma Hwang; Not pictured: Tyson Brunstetter, J. D. Polk
      Online participants: Stephen Alamo, Mark Crowther, Steven Nissen, Mark Rosenberg, Jeffrey Weitz, R. Eugene Zierler, Serena Aunon, Tina Bayuse, Laura Beachy, Becky Brocato, Daniel Buckland, Jackie Charvat, Diana Cruz Topete, Quinn Dufurrena, Robert Haddon, Joanne Kaouk, Kim Lowe, Steve Laurie, Karina Marshall-Goebel, Sara Mason, Shannan Moynihan, James Pattarini, Devan Petersen, Ruth Reitzel, Donna Roberts, Lucia Roccaro, Mike Stenger, Terry Taddeo, Gavin Travers, Mary Van Baalen, Liz WarrenNASA In October 2024, NASA’s Office of the Chief Health and Medical Officer (OCHMO) initiated a working group to review the status and progress of research and clinical activities intended to mitigate the risk of venous thromboembolism (VTE) during spaceflight. The working group took place over two days at NASA’s Johnson Space Center; a second meeting on the topic was held in December 2024 at the European Space Agency (ESA) facility in Cologne, Germany.
      Read More about the Risk of VTE The working group was assembled from internal NASA subject matter experts (SMEs), the NASA OCHMO Standards Team, NASA and ESA stakeholders, and external SMEs, including physicians and medical professionals from leading universities and medical centers in the United States and Canada.

      Background
      Spaceflight Venous Thrombosis (SVT)
      Spaceflight Venous Thrombosis (SVT) refers to a phenomenon experienced during spaceflight in which a thrombus (blood clot) forms in the internal jugular vein (and/or associated vasculature) that may be symptomatic (thrombus accompanied by, but not limited to, visible internal jugular vein swelling, facial edema beyond “nominal” spaceflight adaptation, eyelid edema, and/or headache) or asymptomatic. Obstructive thrombi have been identified in a very small number of crewmembers, as shown in the figure below.

      Note that the figure below is for illustrative purposes only; locations are approximate, and size is not to scale.

      Approximate location of identified thrombi in crewmembers.Source: Modified from Cerebral Sinus Venous Thrombosis – University of Colorado Denver With treatment, crewmembers were able to complete their mission, and anticoagulants were discontinued several days prior to landing to minimize the risk of bleeding in the event of a traumatic injury. Some thromboses completely resolved post landing, and some required additional treatment.
      Pathophysiology of Venous Thromboembolism (VTE)
      The proposed pathogenesis of VTE is referred to as Virchow’s triad and suggests that VTE occurs as the result of:
      Alterations in blood flow (i.e., stasis), Vascular endothelial injury/changes, and/or, Alterations in the constituents of the blood leading to hypercoagulability (i.e., hereditary predisposition or acquired hypercoagulability). Note: pathophysiology are the changes that occur during a disease process; hypercoagulability is the increased tendency to develop blood to clots.
      The Virchow’s triad of risk factors for venous thrombosis.Bouchnita, 2017 Blood stasis, or venous stasis, refers to a condition in which the blood flow in the veins slows down which leads to pooling in the veins. This slowing of the blood may be due to vein valves becoming damaged or weak, immobility, and/or the absence of muscular contractions. Associated symptoms include swelling, skin changes, varicose veins, and slow-healing sores or ulcers. In terrestrial medicine, venous thrombosis is typically caused by damaged or weakened vein valves, which can be due to many factors, including aging, blood clots, varicose veins, obesity, pregnancy, sedentary lifestyle, estrogen use, and hereditary predisposition.

      Spaceflight Considerations
      Altered Venous Blood Flow and Spaceflight Associated Neuro-ocular Syndrome

      In addition to the terrestrial risk factors of VTE, there are physiological changes associated with spaceflight that are hypothesized to potentially play a role in the development of VTE in weightlessness. Specifically, researchers have explored the effects of the microgravity environment and subsequent observed headward fluid shifts that occur, and the potential impact on blood flow. Crewmembers onboard the International Space Station (ISS) experience weightlessness due to the microgravity environment and thus experience a sustained redistribution of bodily fluids from the legs toward the head. The prolonged headward fluid shifts during weightlessness results in facial puffiness, decreased leg volume, increased cardiac stroke volume, and decreased plasma volume.
      Crewmembers have also experienced altered blood flow during spaceflight, including retrograde venous blood flow (RVBF) (the backflow of venous blood towards the brain) or stasis (a stoppage or slowdown in the flow of blood). While the causes of the observed stasis and retrograde blood flow in spaceflight participants is not well understood, the potential clinical significance of the role it may have in the development of thrombus formation warrants further investigation.
      Doppler imaging of a retrograde flow in the left internal jugular vein.Yan & Seow, 2009 Other physiological concerns affected by fluid shifts are being studied to consider if any relation to VTE exists. Chronic weightlessness can cause bodily fluids such as blood and cerebrospinal fluid to move toward the head, which can lead to optic nerve swelling, folds in the retina, flattening of the back of the eye, and swelling in the brain. This collection of eye and brain changes is called “spaceflight associated neuro-ocular syndrome,” or SANS. Some astronauts only experience mild changes in space, while others have clinically significant outcomes. The long-term health outcome from these changes is unknown but actively being investigated. The risk of developing SANS is higher during longer-duration missions and remains a top research priority for scientists ahead of a Mars mission.
      Conclusions and Further Work
      Based on expert opinion and the assessment of the risk factors for thrombosis, an algorithm was developed to provide guidance for in-mission assessment and treatment of thrombus formation in weightlessness. The algorithm is based on early in-flight ultrasound testing to determine the flow characteristic of the left internal jugular vein and associated vasculature.
      NASA Working Group Recommendations
      The working group recommended several areas for further investigation to assess feasibility and potential to mitigate the risk of thrombosis in spaceflight:
      Improved detection capabilities to identify when a thrombus has formed in-flight, Pathophysiology/factors leading to thrombi formation during spaceflight, Countermeasures and treatment
      For more information on the working group meeting and a complete list of references, please see the Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report.
      Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report Share
      Details
      Last Updated Mar 14, 2025 EditorKim Lowe Related Terms
      Office of the Chief Health and Medical Officer (OCHMO) Astronauts General Human Health and Performance Humans in Space The Human Body in Space Keep Exploring Discover Related Topics
      OCHMO Independent Assessments
      Independent assessment plays a crucial role in NASA’s long-term success by addressing essential questions requiring rapid response to support further…
      Aerospace Medical Certification Standard
      This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
      Human Spaceflight Standards
      The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
      Human Spaceflight and Aviation Standards
      The Human Spaceflight and Aviation Standards Team continuously works with subject matter experts and with each space flight program to…
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Rocket City Regional – Alabama’s annual For Inspiration and Recognition of Science and Technology (FIRST) Robotics Regional Competition – is scheduled for Friday, March 14, through Saturday, March 15, at the Von Braun Center South Hall in Huntsville, Alabama. 
      FIRST Robotics is a global robotics competition for students in grades 9-12. Teams are challenged to raise funds, design a team brand, hone teamwork skills, and build and program industrial-sized robots to play a difficult field game against competitors. 
      Students from RAD Robotics Team 7111 – a FIRST Robotics team from Huntsville, Alabama, and sponsored by NASA’s Marshall Space Flight Center – make adjustments to their robot during the 2024 Rocket City Regional FIRST Robotics Competition in Huntsville. District and regional competitions – such as the Rocket City Regional – are held across the country during March and April, providing teams a chance to qualify for the 2025 FIRST Robotics Competition Championship events held in mid-April in Houston.
      Hundreds of high school students from 44 teams from 10 states and 2 countries will compete in a new robotics game called, “REEFSCAPE.” 
      This event is free and open to the public. Opening ceremonies begin at 8:30 a.m. CDT followed by qualification matches on March 14 and March 15. The Friday awards ceremony will begin at 5:45 p.m., while the Saturday awards ceremony will begin at 1:30 p.m.
      NASA and its Robotics Alliance Project provide grants for high school teams and support for FIRST Robotics competitions to address the critical national shortage of students pursuing STEM (Science, Technology, Engineering, and Mathematics) careers. The Rocket City Regional Competition is supported by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Office of STEM Engagement. 
      News media interested in covering this event should respond no later than 4 p.m. on Thursday, March 13 by contacting Taylor Goodwin at 256-544-0034 or taylor.goodwin@nasa.gov. 
      Learn more about the Rocket City Regional event: 
      https://www.firstinspires.org/team-event-search/event?id=72593
      Find more information about Marshall’s support for education programs:
      https://www.nasa.gov/marshall/marshall-stem-engagement
      Taylor Goodwin 
      256-544-0034
      Marshall Space Flight Center, Huntsville, Alabama
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Mar 12, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      7 min read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork 
      Article 2 weeks ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 4 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
      Article 4 weeks ago Keep Exploring Discover Related Topics
      NASA STEM Opportunities and Activities For Students
      Marshall Space Flight Center
      Marshall STEM Engagement
      About STEM Engagement at NASA
      View the full article
    • By NASA
      Center Director Dr. Jimmy Kenyon gives an overview of NASA Glenn Research Center’s areas of expertise and how it supports the agency’s missions and programs. Credit: NASA/Susan Valerian  NASA Glenn Research Center’s Director Dr. Jimmy Kenyon and Chief Counsel Callista Puchmeyer participated in a local symposium that addressed the operational and legal challenges of human spaceflight. The one-day conference was held at the Cleveland State University (CSU) College of Law on Feb.13.  

      Kenyon gave a keynote that provided an overview of NASA Glenn’s areas of expertise and how the center supports the agency’s missions and programs. He also talked about the role of growing commercial partnerships at NASA.  
      Panelists, left to right: Col. (Ret.) Joseph Zeis, senior advisor for Aerospace and Defense, Office of the Governor of Ohio; Callista Puchmeyer, chief counsel, NASA’s Glenn Research Center; and Jon. P. Yormick, international business and trade attorney, Yormick Law, answer questions on operational and legal challenges of human spaceflight at a Cleveland State University College of Law symposium. Credit: NASA/Susan Valerian  Puchmeyer, a graduate of CSU’s College of Law and recent inductee into its Hall of Fame, participated in a panel about Northeast Ohio’s aerospace industry and the legal aspects of commercial partnerships. 
      Additionally, human spaceflight experts from academia, law, and science spoke throughout the day on topics ranging from the health and training of astronauts to the special law of space stations. Romanian astronaut Dumitru-Dorin Prunariu joined remotely to provide a personal perspective. 
      Return to Newsletter Explore More
      2 min read NASA Releases its Spinoff 2025 Publication 
      Article 4 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
      Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
      Article 22 hours ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Serena M. Auñón-Chancellor Examines Her Eyes in SpaceNASA Exposure to altered gravity can cause ocular and brain structural changes to develop during spaceflight; these changes could lead to vision alterations, cognitive effects, or other deleterious health effects. SANS is a syndrome unique to humans that fly in space, and there is no terrestrial disease equivalent. Brain structural changes appear small but seem to indicate that over half of crewmembers experience one or more symptoms of SANS. Determining intracranial pressure during spaceflight could improve our understanding of SANS mechanisms and improve our ability to target countermeasures for determining risk for future missions.
      NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts an ocular health exam on herself in the Destiny laboratory of the Earth-orbiting International Space Station. (NASA)NASA Directed Acyclic Graph Files
      + DAG File Information (HSRB Home Page)
      + SANS Risk DAG and Narrative (PDF)
      + SANS Risk DAG Code (TXT)
      Human Research Roadmap
      + Risk of Spaceflight Associated Neuro-ocular Syndrome
      + 2022 April Evidence Report (PDF)
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Risk of Toxic Substance Exposure
      Article 15 mins ago 1 min read Risk of Urinary Retention
      Article 15 mins ago 1 min read Risk to Crew Health Due to Electrical Shock (Electrical Shock Risk)
      Article 15 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
    • By European Space Agency
      Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
      View the full article
  • Check out these Videos

×
×
  • Create New...