Members Can Post Anonymously On This Site
News Update on Upcoming NASA's SpaceX Crew-2 Mission
-
Similar Topics
-
By NASA
NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
NASA Headquarters, Washington
202-358-1600
tiernan.p.doyle@nasa.gov
Rachel Hoover
Ames Research Center, Silicon Valley, Calif.
650-604-4789
rachel.hoover@nasa.gov
View the full article
-
By NASA
An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
Anthocyanins protect seeds in space
After exposure to space outside the International Space Station, purple-pigmented rice seeds rich in anthocyanin had higher germination rates than non-pigmented white rice seeds. This result suggests that anthocyanin, a flavonoid known to protect plants from UV irradiation, could help preserve seed viability on future space missions.
Plants are key components for systems being designed to produce nutrients and recycle carbon for future sustained space habitation, but space has been shown to reduce seed viability. Tanpopo-3, part of a series of investigations from JAXA (Japan Aerospace Exploration Agency), examined the role of anthocyanins in maintaining seed viability. Results of this and previous experiments suggest that solar light in space is more detrimental to seeds than radiation.
Preflight image of the Tanpopo panel used to expose seeds and other samples to space. Tanpopo-3 team Low-cost, autonomous technology validated for space research
Researchers verified a pair of devices for conducting experiments in space that have multi-step reactions and require automatic mixing of solutions. This type of low-cost, autonomous technology expands the possibilities for space-based research, including work by commercial entities.
Ice Cubes #6- Kirara, an investigation from ESA (European Space Agency) developed by the Japan Manned Space Systems Corporation, used a temperature-controlled incubator to crystallize proteins in microgravity. The Kirara facility also enables production of polymers, including cellulose, which have different uses than protein crystals. This experiment synthesized and decomposed cellulose.
The Kirara incubator used for experiments in microgravity. United Arab Emirates/Sultan Alneyadi Insights from observations of an X-ray binary star
Researchers used Neutron star Interior Composition Explorer (NICER) to observe the timing of 15 X-ray bursts from 4U 1820–30, an ultracompact X-ray binary (UCXB) star. An X-ray binary is a neutron star orbiting a companion from which it takes matter. If confirmed with future observations, this result makes 4U 1820–30 the fastest-spinning neutron star known in an X-ray binary system and provides insights into the physics of neutron stars.
NICER makes high-precision measurements of neutron stars (the ultra-dense matter created when massive stars explode as supernovas) and other phenomena to increase our understanding of the universe. NICER has monitored 4U 1820–30 since its launch in June 2017. A short orbital period indicates a relatively small binary system, and 4U 1820–30 has the shortest known orbital period among low-mass X-ray binaries.
Animated image of a binary star system,NASA’s Goddard Space Flight Center/Chris SmithView the full article
-
By NASA
JPL is a research and development lab federally funded by NASA and managed by Caltech. NASA/JPL-Caltech Workforce statement and memo to employees
JPL statement issued on Nov. 12, 2024:
While we have taken various measures to meet our current FY’25 budget allocation, we have reached the difficult decision to reduce the JPL workforce through layoffs. This reduction affects approximately 325 of our colleagues, an impact of about 5% of our workforce. The impacts are occurring across technical, business, and support areas of the Laboratory. These are painful but necessary adjustments that will enable us to adhere to our budget while continuing our important work for NASA and our nation.
The following is a memo sent earlier today from JPL Director Laurie Leshin to employees:
Dear Colleagues,
This is a message I had hoped not to have to write. I’m reaching out to share the difficult news that JPL will be taking a workforce action tomorrow, Nov. 13, resulting in a layoff of approximately 325 of our colleagues, or ~5% of our workforce. Despite this being incredibly difficult for our community, this number is lower than projected a few months ago thanks in part to the hard work of so many people across JPL. The workforce assessment conducted as part of this process has been both extensive and thorough, and although we can never have perfect insight into the future, I sincerely believe that after this action we will be at a more stable workforce level moving forward.
How we got here:
During our last town hall, I discussed our continued funding challenges and projections of what the potential impact on our workforce could look like. I shared that we had been working through multiple workforce scenarios to address the dynamic funding environment, and that we have been doing everything we can, in partnership with our colleagues at NASA and elsewhere, to minimize adverse effects on JPL’s capabilities and team.
Unfortunately, despite all these efforts, we need to make one further workforce reduction to meet the available funding for FY’25. This reduction is spread across essentially all areas of the Lab including our technical, project, business, and support areas. We have taken seriously the need to re-size our workforce, whether direct-funded (project) or funded on overhead (burden). With lower budgets and based on the forecasted work ahead, we had to tighten our belts across the board, and you will see that reflected in the layoff impacts.
As part of our workforce assessment and determining where reductions are being made, we have taken time to complete a full review of our competencies, future mission needs, and we have established guidance for our core capabilities across the Laboratory. We have worked closely with the Executive Council, division managers, project leadership and others to ensure we maintain the appropriate levels of technical expertise, capacity for innovation, and ability to deliver on an exciting future for JPL. Our focus will continue to be on empowering managers to support their teams through this action and equipping all of us with a variety of resources as we move forward together.
Here are the details about what will happen tomorrow:
Unless notified otherwise, all employees are required to work from home tomorrow Nov. 13, regardless of their telework status. Tomorrow you will be invited to a short, virtual, Lab-wide meeting with myself and Deputy Director Leslie Livesay at 9:30 a.m. We will relay the details of where we are in the process and what to expect. Please look out for the meeting notification that will follow this memo. There will not be organization-level notification meetings as in February. This one meeting will provide the information needed for the entire Lab at once.
Our approach is to prioritize notifying everyone via email as quickly as possible whether their role is being affected by the layoff or not. Then we can rapidly shift to providing personalized support to our laid-off colleagues who are part of the workforce reduction, including offering dedicated time to discuss their benefits, and several other forms of assistance. Because of system limitations, the individual email notifications will take place over several hours tomorrow. A schedule of the notifications, which will occur by organization, will be shared in the virtual briefing tomorrow morning and also posted on JPL Space, the JPL HR Website, and Slack. You can also find answers to Frequently Asked Questions (FAQs) on our website here.
Our JPL Community:
I know the absence of our colleagues will be acutely felt, especially after a very challenging year for the Lab. To those leaving JPL as a result of this action, we are grateful for your many vital contributions to JPL and to NASA. We will be here to support you during this time to ensure this transition is as smooth as possible.
To reiterate to you all, I believe this is the last cross-Lab workforce action we will need to take in the foreseeable future. After this action, we will be at about 5,500 JPL regular employees. I believe this is a stable, supportable staffing level moving forward. While we can never be 100% certain of the future budget, we will be well positioned for the work ahead. This may not help much in this difficult moment, but I do want to be crystal clear with my thoughts and perspective. If we hold strong together, we will come through this, just as we have done during other turbulent times in JPL’s nearly 90-year history. Finally, even though the coming leadership transition at NASA may introduce both new uncertainties and new opportunities, this action would be happening regardless of the recent election outcome.
While I know many of us are feeling anger or disappointment with this news, I encourage everyone to act with grace and empathy toward one another, and to lean on each other for support. I will be speaking with you again very soon to discuss our path ahead. Until then, know that we are an incredibly strong organization – our dazzling history, current achievements, and relentless commitment to exploration and discovery position us well for the future.
Laurie
Share
Details
Last Updated Nov 12, 2024 Related Terms
Jet Propulsion Laboratory Explore More
4 min read Mining Old Data From NASA’s Voyager 2 Solves Several Uranus Mysteries
Article 1 day ago 6 min read Powerful New US-Indian Satellite Will Track Earth’s Changing Surface
Article 4 days ago 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami
Article 2 weeks ago View the full article
-
By NASA
Researchers demonstrated the feasibility of 3D bioprinting a meniscus or knee cartilage tissue in microgravity. This successful result advances technology for bioprinting tissue to treat musculoskeletal injuries on long-term spaceflight or in extraterrestrial settings where resources and supply capacities are limited.
BFF Meniscus-2 evaluated using the BioFabrication Facility to 3D print knee cartilage tissue using bioinks and cells. The meniscus is the first engineered tissue of an anatomically relevant shape printed on the station. Manufactured human tissues have potential as alternatives to donor organs, which are in short supply. Bioprinting in microgravity overcomes some of the challenges present in Earth’s gravity, such as deformation or collapse of tissue structures.
A human knee meniscus 3D bioprinted in space using the International Space Station’s BioFabrication Facility.Redwire Complex cultures of central nervous system cells known as brain organoids can be maintained in microgravity for long periods of time and show faster development of neurons than cultures on Earth. These findings could help researchers develop treatments for neurodegenerative diseases on Earth and address potential adverse neurological effects of spaceflight.
Cosmic Brain Organoids examined growth and gene expression in 3D organoids created with neural stem cells from individuals with primary progressive multiple sclerosis and Parkinson’s disease. Results could improve understanding of these neurological diseases and support development of new treatments. Researchers plan additional studies on the underlying causes of the accelerated neuron maturation.
Neural growth in brain organoids that spent more than a month in space. Jeanne Frances Loring, National Stem Cell Foundation Researchers demonstrated that induced pluripotent stem cells (iPSCs) can be processed in microgravity using off the-shelf cell culture materials. Using standard laboratory equipment and protocols could reduce costs and make space-based biomedical research accessible to a broader range of scientists and institutions.
Stellar Stem Cells Ax-2 evaluated how microgravity affects methods used to generate and grow stem cells into a variety of tissue types on the ground. iPSCs can give rise to any type of cell or tissue in the human body, and insight into processing in space could support their use in regenerative medicine and future large-scale biomanufacturing of cellular therapeutics in space.
NASA astronaut Peggy Whitson, an Axiom Mission 2 crew member, works on stem cell research on a previous mission. NASA/Shane KimbroughView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.