Members Can Post Anonymously On This Site
How it Looks to Land on Mars on This Week @NASA – February 27, 2021
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Crew Module Test Article (CMTA), a full scale mockup of the Orion spacecraft, is seen in the Pacific Ocean as teams practice Artemis recovery operations during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Saturday, March 29, 2025. NASA/Bill Ingalls Preparations for NASA’s next Artemis flight recently took to the seas as a joint NASA and Department of Defense team, led by NASA’s Exploration Ground Systems Program, spent a week aboard the USS Somerset off the coast of California practicing procedures for recovering the Artemis II spacecraft and crew.
Following successful completion of Underway Recovery Test-12 (URT-12) on Monday, NASA’s Landing and Recovery team and their Defense Department counterparts are certified to recover the Orion spacecraft as part of the upcoming Artemis II test flight that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
“This will be NASA’s first crewed mission to the Moon under the Artemis program,” said Lili Villarreal, the landing and recovery director for Artemis II. “A lot of practice led up to this week’s event, and seeing everything come together at sea gives me great confidence that the air, water, ground, and medical support teams are ready to safely recover the spacecraft and the crew for this historic mission.”
A wave breaks inside the well deck of USS Somerset as teams work to recover the Crew Module Test Article (CMTA), a full scale replica of the Orion spacecraft, as they practice Artemis recovery operations during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Joel Kowsky Once Orion reenters Earth’s atmosphere, the capsule will keep the crew safe as it slows from nearly 25,000 mph to about 325 mph. Then its system of 11 parachutes will deploy in a precise sequence to slow the capsule and crew to a relatively gentle 20 mph for splashdown off the coast of California. From the time it enters Earth’s atmosphere, the Artemis II spacecraft will fly 1,775 nautical miles to its landing spot in the Pacific Ocean. This direct approach allows NASA to control the amount of time the spacecraft will spend in extremely high temperature ranges.
The Artemis II astronauts trained during URT-11 in February 2024, when they donned Orion Crew Survival System suits and practiced a range of recovery operations at sea using the Crew Module Test Article, a stand -in for their spacecraft.
For the 12th training exercise, NASA astronauts Deniz Burnham and Andre Douglas, along with ESA (European Space Agency) astronaut Luca Parmitano, did the same, moving from the simulated crew module to USS Somerset, with helicopters, a team of Navy divers in small boats, NASA’s open water lead – a technical expert and lead design engineer for all open water operations – as well as Navy and NASA medical teams rehearsing different recovery scenarios.
Grant Bruner, left, and Gary Kirkendall, right, Orion suit technicians, are seen with ESA (European Space Agency) astronaut Luca Parmitano, second from left, and NASA astronauts Deniz Burnham, center, and Andre Douglas, as they prepare to take part in Artemis recovery operations as part of Underway Recovery Test-12 onboard USS Somerset off the coast of California, Thursday, March 27, 2025. NASA/Joel Kowsky “Allowing astronauts to participate when they are not directly involved in a mission gives them valuable experience by exposing them to a lot of different scenarios,” said Glover, who will pilot Artemis II. “Learning about different systems and working with ground control teams also broadens their skillsets and prepares them for future roles. It also allows astronauts like me who are assigned to the mission to experience other roles – in this case, I am serving in the role of Joe Acaba, Chief of the Astronaut Office.”
NASA astronaut and Artemis II pilot Victor Glover, right, speaks to NASA astronauts Andre Douglas and Deniz Burnham as they prepare to take part in practicing Artemis recovery procedures during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Friday, March 28, 2025.NASA/Joel Kowsky NASA astronaut Deniz Burnham smiles after landing in a Navy helicopter onboard USS Somerset during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Bill Ingalls As the astronauts arrive safely at the ship for medical checkouts, recovery teams focus on returning the spacecraft and its auxiliary ground support hardware to the amphibious transport dock.
Navy divers attach a connection collar to the spacecraft and an additional line to a pneumatic winch inside the USS Somerset’s well deck, allowing joint NASA and Navy teams to tow Orion toward the ship. A team of sailors and NASA recovery personnel inside the ship manually pull some of the lines to help align Orion with its stand, which will secure the spacecraft for its trip to the shore. Following a safe and precise recovery, sailors will drain the well deck of water, and the ship will make its way back to Naval Base San Diego.
The Artemis II test flight will confirm the foundational systems and hardware needed for human deep space exploration, taking another step toward missions on the lunar surface and helping the agency prepare for human missions to Mars.
About the Author
Allison Tankersley
Public Affairs Specialist
Share
Details
Last Updated Mar 31, 2025 Related Terms
Missions Artemis 2 Exploration Ground Systems Exploration Systems Development Mission Directorate Orion Multi-Purpose Crew Vehicle Explore More
5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science
Every NASA mission represents a leap into the unknown, collecting data that pushes the boundaries…
Article 2 hours ago 5 min read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a…
Article 5 hours ago 6 min read She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead
Article 8 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice Read this story in English here.
El equipo detrás del X-59 de la NASA completó en marzo otra prueba crítica en tierra, garantizando que el silencioso avión supersónico será capaz de mantener una velocidad específica durante su funcionamiento. Esta prueba, conocida como mantenimiento automático de velocidad del motor, es el más reciente marcador de progreso a medida que el X-59 se acerca a su primer vuelo este año.
“El mantenimiento automático de la velocidad del motor es básicamente la versión de control de crucero de la aeronave,” explicó Paul Dees, jefe adjunto de propulsión de la NASA del X-59 en el Centro de Investigación de Vuelo Armstrong de la agencia en Edwards, California. “El piloto activa el control de velocidad a su velocidad actual y luego puede aumentarla o ajustarla gradualmente según sea necesario.”
El equipo del X-59 ya había realizado una prueba similar en el motor, pero sólo como un sistema aislado. La prueba de marzo verificó que la retención de velocidad funciona correctamente tras su integración en la aviónica de la aeronave.
“Necesitábamos verificar que el mantenimiento automático de velocidad funcionara no sólo dentro del propio motor, sino como parte de todo el sistema del avión,” explicó Dees. “Esta prueba confirmó que todos los componentes – software, enlaces mecánicos y leyes de control – funcionan juntos según lo previsto.”
El éxito de la prueba confirmó la habilidad de la aeronave para controlar la velocidad con precisión, lo cual será muy invaluable durante el vuelo. Esta capacidad aumentará la seguridad de los pilotos, permitiéndoles enfocarse en otros aspectos críticos de la operación de vuelo.
“El piloto va a estar muy ocupado durante el primer vuelo, asegurándose de que la aeronave sea estable y controlable,” dijo Dees. “Al tener la función del mantenimiento automático de velocidad, de reduce parte de esa carga de trabajo, lo que hace que el primer vuelo sea mucho más seguro.”
Inicialmente el equipo tenía planeado comprobar el mantenimiento automático de velocidad como parte de una próxima serie de pruebas en tierra donde alimentarían la aeronave con un sólido conjunto de datos para verificar su funcionalidad tanto en condiciones normales como de fallo, conocidas como pruebas de pájaro de aluminio (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real). Sin embargo, el equipo se dio cuenta que había una oportunidad de probarlo antes.
“Fue un objetivo de oportunidad,” dijo Dees. “Nos dimos cuenta de que estábamos listos para probar el mantenimiento automático de velocidad del motor por separado mientras otros sistemas continuaban con la finalización de su software. Si podemos aprender algo antes, siempre es mejor.”
Con cada prueba exitosa, el equipo integrado de la NASA y Lockheed Martin acerca el X-59 al primer vuelo, y hacer historia en la aviación a través de su tecnología supersónica silenciosa.
Artículo Traducido por: Priscila Valdez
Share
Details
Last Updated Mar 31, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
Aeronáutica NASA en español Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Visiting Mars on the Way to the Outer Solar System
Written by Roger Wiens, Principal Investigator, SuperCam instrument / Co-Investigator, SHERLOC instrument at Purdue University
A portion of the “Sally’s Cove” outcrop where the Perseverance rover has been exploring. The radiating lines in the rock on the left of the image may indicate that it is a shatter cone, showing the effects of the shock wave from a nearby large impact. The image was taken by Mastcam-Z’s left camera on March 21, 2025 (Sol 1452, or Martian day 1,452 of the Mars 2020 mission) at the local mean solar time of 12:13:44. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was voted by the public as “Image of the week.” NASA/JPL-Caltech/ASU Recently Mars has had a few Earthly visitors. On March 1, NASA’s Europa Clipper flew within 550 miles (884 kilometers) of the Red Planet’s surface on its way out to Jupiter. On March 12, the European Space Agency’s Hera spacecraft flew within about 3,100 miles (5,000 kilometers) of Mars, and only 300 kilometers from its moon, Deimos. Hera is on its way to study the binary asteroid Didymos and its moon Dimorphos. Next year, in May 2026, NASA’s Psyche mission is scheduled to buzz the Red Planet on its way to the metal-rich asteroid 16 Psyche, coming within a few thousand kilometers.
Why all these visits to Mars? You might at first think that they’re using Mars as an object of opportunity for their cameras, and you would be partially right. But Mars has more to give these missions than that. The main reason for these flybys is the extra speed that Mars’ velocity around the Sun can give them. The idea that visiting a planet can speed up a spacecraft is not all that obvious, because the same gravity that attracts the spacecraft on its way towards the planet will exert a backwards force as the spacecraft leaves the planet.
The key is in the direction that it approaches and leaves the planet. If the spacecraft leaves Mars heading in the direction that Mars is traveling around the Sun, it will gain speed in that direction, slingshotting it farther into the outer solar system. A spacecraft can typically gain several percent of its speed by performing such a slingshot flyby. The closer it gets to the planet, the bigger the effect. However, no mission wants to be slowed by the upper atmosphere, so several hundred kilometers is the closest that a mission should go. And the proximity to the planet is also affected by the exact direction the spacecraft needs to go when it leaves Mars.
Clipper’s Mars flyby was a slight exception, slowing down the craft — by about 1.2 miles per second (2 kilometers per second) — to steer it toward Earth for a second gravity assist in December 2026. That will push the spacecraft the rest of the way to Jupiter, for its 2030 arrival.
While observing Mars is not the main reason for their visits, many of the visiting spacecraft take the opportunity to use their cameras either to perform calibrations or to study the Red Planet and its moons.
During Clipper’s flyby over sols 1431-1432, Mastcam-Z was directed to watch the skies for signs of the interplanetary visitor. Clipper’s relatively large solar panels could have reflected enough sunlight for it to be seen in the Mars night sky, much as we can see satellites overhead from Earth. Unfortunately, the spacecraft entered the shadow of Mars just before it came into potential view above the horizon from Perseverance’s vantage point, so the sighting did not happen. But it was worth a try.
Meanwhile, back on the ground, Perseverance is performing something of a cliff-hanger. “Sally’s Cove” is a relatively steep rock outcrop in the outer portion of Jezero crater’s rim just north of “Broom Hill.” Perseverance made an approach during March 19-23, and has been exploring some dark-colored rocks along this outcrop, leaving the spherules behind for the moment. Who knows what Perseverance will find next?
Share
Details
Last Updated Mar 28, 2025 Related Terms
Blogs Explore More
2 min read Sols 4493-4494: Just Looking Around
Article
4 hours ago
2 min read Sols 4491-4492: Classic Field Geology Pose
Article
2 days ago
3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By European Space Agency
Week in images: 24-28 March 2025
Discover our week through the lens
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Ice cover ebbs and flows through the seasons in the Arctic (left) and the Antarctic (right). Overall, ice cover has declined since scientists started tracking it half a century ago. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5099Trent Schindler/NASA’s Scientific Visualization Studio Winter sea ice cover in the Arctic was the lowest it’s ever been at its annual peak on March 22, 2025, according to NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.53 million square miles (14.33 million square kilometers), the maximum extent fell below the prior low of 5.56 million square miles (14.41 million square kilometers) in 2017.
In the dark and cold of winter, sea ice forms and spreads across Arctic seas. But in recent years, less new ice has been forming, and less multi-year ice has accumulated. This winter continued a downward trend scientists have observed over the past several decades. This year’s peak ice cover was 510,000 square miles (1.32 million square kilometers) below the average levels between 1981 and 2010.
In 2025, summer ice in the Antarctic retreated to 764,000 square miles (1.98 million square kilometers) on March 1, tying for the second lowest minimum extent ever recorded. That’s 30% below the 1.10 million square miles (2.84 million square kilometers) that was typical in the Antarctic prior to 2010. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.
The reduction in ice in both polar regions has led to another milestone — the total amount of sea ice on the planet reached an all-time low. Globally, ice coverage in mid-February of this year declined by more than a million square miles (2.5 million square kilometers) from the average before 2010. Altogether, Earth is missing an area of sea ice large enough to cover the entire continental United States east of the Mississippi.
“We’re going to come into this next summer season with less ice to begin with,” said Linette Boisvert, an ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It doesn’t bode well for the future.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Observations since 1978 show that ice cover has declined at both poles, leading to a downward trend in the total ice cover over the entire planet. In February 2025, global ice fell to the smallest area ever recorded. Download this visualization from NASA's Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5521Mark Subbaro/NASA's Scientific Visualization Studio Scientists primarily rely on satellites in the Defense Meteorological Satellite Program, which measure Earth’s radiation in the microwave range. This natural radiation is different for open water and for sea ice — with ice cover standing out brightly in microwave-based satellite images. Microwave scanners can also penetrate through cloud cover, allowing for daily global observations. The DMSP data are augmented with historical sources, including data collected between 1978 and 1985 with the Nimbus-7 satellite that was jointly operated by NASA and the National Oceanic and Atmospheric Administration.
“It’s not yet clear whether the Southern Hemisphere has entered a new norm with perennially low ice or if the Antarctic is in a passing phase that will revert to prior levels in the years to come,” said Walt Meier, an ice scientist with NSIDC.
By James Riordon
NASA’s Earth Science News Team
Media contact: Elizabeth Vlock
NASA Headquarters
Share
Details
Last Updated Mar 27, 2025 LocationNASA Goddard Space Flight Center Related Terms
Earth Earth's Vital Signs General Explore More
1 min read Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline
This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024.…
Article 6 months ago 1 min read Keeping PACE with the Oceans
NASA can detect tiny organisms, phytoplankton, that affect the color of ocean from space, and…
Article 9 months ago 1 min read Antarctic Sea Ice Hits Annual Minimum, Second Lowest On Record
On February 20th, 2024, Antarctic sea ice officially reached its minimum extent for the year.
Article 1 year ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.