Jump to content

NASA Astronaut Mike Hopkins Transfers to US Space Force While Aboard International Space Station


Space Force

Recommended Posts

NASA Astronaut Mike Hopkins became the first-ever U.S. Space Force officer assigned as an astronaut when he voluntarily transferred from the U.S. Air Force while in orbit on the International Space Station, adding to a long history of military officers working at NASA in a civilian capacity. NASA Administrator Jim Bridenstine and NASA Deputy Administrator Jim Morhard joined Secretary of the Air Force Barbara Barrett and Chief of Space Operations General Jay Raymond from NASA Headquarters in Washington, D.C., for the ceremony.
General John Raymond, Chief of Space Operations, U.S. Space Force, center, administers the oath of office to NASA astronaut Mike Hopkins, onboard the International Space Station, as he is transferred from the U.S. Air Force to the U.S. Space Force, Friday, Dec. 18, 2020, from the Space Operations Center at NASA Headquarters in Washington.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 Min Read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis
      An artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. Credits:
      NASA-JPL, Caltech In 1936, astronomers saw a puzzling event in the constellation Orion: the young star FU Orionis (FU Ori) became a hundred times brighter in a matter of months. At its peak, FU Ori was intrinsically 100 times brighter than our Sun. Unlike an exploding star though, it has declined in luminosity only languidly since then.
      Now, a team of astronomers has wielded NASA’s Hubble Space Telescope‘s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They find that the inner disk touching the star is extraordinarily hot — which challenges conventional wisdom.
      The observations were made with the telescope’s COS (Cosmic Origins Spectrograph) and STIS (Space Telescope Imaging Spectrograph) instruments. The data includes the first far-ultraviolet and new near-ultraviolet spectra of FU Ori.
      “We were hoping to validate the hottest part of the accretion disk model, to determine its maximum temperature, by measuring closer to the inner edge of the accretion disk than ever before,” said Lynne Hillenbrand of Caltech in Pasadena, California, and a co-author of the paper. “I think there was some hope that we would see something extra, like the interface between the star and its disk, but we were certainly not expecting it. The fact we saw so much extra — it was much brighter in the ultraviolet than we predicted — that was the big surprise.”
      A Better Understanding of Stellar Accretion
      Originally deemed to be a unique case among stars, FU Ori exemplifies a class of young, eruptive stars that undergo dramatic changes in brightness. These objects are a subset of classical T Tauri stars, which are newly forming stars that are building up by accreting material from their disk and the surrounding nebula. In classical T Tauri stars, the disk does not touch the star directly because it is restricted by the outward pressure of the star’s magnetic field.
      The accretion disks around FU Ori objects, however, are susceptible to instabilities due to their enormous mass relative to the central star, interactions with a binary companion, or infalling material. Such instability means the mass accretion rate can change dramatically. The increased pace disrupts the delicate balance between the stellar magnetic field and the inner edge of the disk, leading to material moving closer in and eventually touching the star’s surface.
      This is an artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope’s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They found that the inner disk, touching the star, is much hotter than expected—16,000 kelvins—nearly three times our Sun’s surface temperature. That sizzling temperature is nearly twice as hot as previously believed. NASA-JPL, Caltech
      Download this image

      The enhanced infall rate and proximity of the accretion disk to the star make FU Ori objects much brighter than a typical T Tauri star. In fact, during an outburst, the star itself is outshined by the disk. Furthermore, the disk material is orbiting rapidly as it approaches the star, much faster than the rotation rate of the stellar surface. This means that there should be a region where the disk impacts the star and the material slows down and heats up significantly. 
      “The Hubble data indicates a much hotter impact region than models have previously predicted,” said Adolfo Carvalho of Caltech and lead author of the study. “In FU Ori, the temperature is 16,000 kelvins [nearly three times our Sun’s surface temperature]. That sizzling temperature is almost twice the amount prior models have calculated. It challenges and encourages us to think of how such a jump in temperature can be explained.”
      To address the significant difference in temperature between past models and the recent Hubble observations, the team offers a revised interpretation of the geometry within FU Ori’s inner region: The accretion disk’s material approaches the star and once it reaches the stellar surface, a hot shock is produced, which emits a lot of ultraviolet light.
      Planet Survival Around FU Ori
      Understanding the mechanisms of FU Ori’s rapid accretion process relates more broadly to ideas of planet formation and survival.
      “Our revised model based on the Hubble data is not strictly bad news for planet evolution, it’s sort of a mixed bag,” explained Carvalho. “If the planet is far out in the disk as it’s forming, outbursts from an FU Ori object should influence what kind of chemicals the planet will ultimately inherit. But if a forming planet is very close to the star, then it’s a slightly different story. Within a couple outbursts, any planets that are forming very close to the star can rapidly move inward and eventually merge with it. You could lose, or at least completely fry, rocky planets forming close to such a star.”
      Additional work with the Hubble UV observations is in progress. The team is carefully analyzing the various spectral emission lines from multiple elements present in the COS spectrum. This should provide further clues on FU Ori’s environment, such as the kinematics of inflowing and outflowing gas within the inner region.
      “A lot of these young stars are spectroscopically very rich at far ultraviolet wavelengths,” reflected Hillenbrand. “A combination of Hubble, its size and wavelength coverage, as well as FU Ori’s fortunate circumstances, let us see further down into the engine of this fascinating star-type than ever before.”
      These findings have been published in The Astrophysical Journal Letters.
      The observations were taken as part of General Observer program 17176.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Abigail Major, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 21, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
    • By Space Force
      Space Force officials have selected 14 senior master sergeants and 25 master sergeants for promotion in the 24S9 and 25S8 promotion cycles, respectively.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Haghighi Quadchart
      Azadeh Haghighi
      University of Illinois, Chicago
      In-space manufacturing and assembly are vital to NASA’s long-term exploration goals, especially for the Moon and Mars missions. Deploying welding technology in space enables the assembly and repair of structures, reducing logistical burdens and supply needs from Earth. The unique challenges and extreme conditions of space–high thermal variations, microgravity, and vacuum–require advanced welding techniques and computational tools to ensure reliability, repeatability, safety, and structural integrity in one-shot weld scenarios. For the first time, this project investigates these challenges by focusing on three key factors: (1) Very low temperatures in space degrade the weldability of high thermal conductivity materials, like aluminum alloys, making it harder to achieve strong, defect-free welds. (2) The extreme vacuum in space lowers the boiling points of alloying elements, altering the keyhole geometry during welding. This selective vaporization changes the weld’s final chemical composition, affecting its microstructure and properties. (3) Microgravity nearly eliminates buoyancy-driven flow of liquid metal inside the molten pool, preventing gas bubbles from escaping, which leads to porosity and defects in the welds. By examining these critical factors using multi-scale multi-physics models integrated with physics-informed machine learning, and forward/inverse uncertainty quantification techniques, this project provides the first-ever real-time digital twin platform to evaluate welding processes under extreme space/lunar conditions. The models are validated through Earth-based experiments, parabolic flight tests, and publicly available data from different databases and agencies worldwide. Moreover, the established models will facilitate extendibility to support in-situ resource utilization on the Moon, including construction and repair using locally sourced materials like regolith. The established fundamental scientific knowledge will minimize trial-and-error, enable high-quality one-shot welds in space, and reduce the need for reworks, significantly reducing the costs and time needed for space missions.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By Space Force
      SSC and USC partnered up to pair USC Trojans with SSC Guardians to work within real USSF programs. This partnership team acted as a “living laboratory” to identify strategies for implementing agile development into complex defense projects.

      View the full article
  • Check out these Videos

×
×
  • Create New...