Members Can Post Anonymously On This Site
Mapped by Sentinel-1 for Vendée Globe safety
-
Similar Topics
-
By European Space Agency
Video: 00:02:18 At ESA, through the Advanced Research in Telecommunications Systems programme, we’re addressing solutions for when safety and security of communication services cannot be guaranteed by the terrestrial networks alone. With our programme Space systems for Safety and Security, or 4S, we are pioneering cutting-edge development of secure and resilient satellite communication systems, technologies and services to improve life on Earth.
Picture a world where our critical infrastructure is protected from cyber threats, and where communication links work when the world around them doesn't. A transportation network where safety is not just a priority, but a guarantee. Where air traffic flows completely efficiently, reliable and connected. Railways operate without interruption, and shipping can navigate safely and securely.
Imagine that our first responders are coordinating via seamless communications, and institutional agencies are acting rapidly and decisively when there's a crisis. All thanks to secure and safe satellite communication systems, orbiting above the planet. This is the future we're building with the 4S programme. A future where space systems safeguard our security, making sure that connectivity remains our greatest strength. Join us as we continue to push the boundaries of innovation.
View the full article
-
By NASA
In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
Award: $45,000 in total prizes
Open Date: November 14, 2024
Close Date: January 23, 2025
For more information, visit: https://www.herox.com/NASASouthPoleSafety
View the full article
-
By Space Force
U.S. Space Forces - Space supports NASA human space flight by planning, integrating, executing, and assessing space operations, providing continuous space situational awareness monitoring for the International Space Station and visiting spacecraft.
View the full article
-
By NASA
5 min read
NASA Science on Health, Safety to Launch on 31st SpaceX Resupply Mission
New science experiments for NASA are set to launch aboard the agency’s SpaceX 31st commercial resupply services mission to the International Space Station. The six investigations aim to contribute to cutting-edge discoveries by NASA scientists and research teams. The SpaceX Dragon spacecraft will liftoff aboard the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Science experiments aboard the spacecraft include a test to study smothering fires in space, evaluating quantum communications, analyzing antibiotic-resistant bacteria, examining health issues like blood clots and inflammation in astronauts, as well as growing romaine lettuce and moss in microgravity.
Developing Firefighting Techniques in Microgravity
Putting out a fire in space requires a unique approach to prioritize the safety of the spacecraft environment and crew. The SoFIE-MIST (Solid Fuel Ignition and Extinction – Material Ignition and Suppression Test) is one of five investigations chosen by NASA since 2009 to develop techniques on how to contain and put out fires in microgravity. Research from the experiment could strengthen our understanding of the beginning stages of fire growth and behavior, which will assist in building and developing more resilient space establishments and creating better plans for fire suppression in space
NASA astronaut Jessica Watkins services components that support the SOFIE (Solid Fuel Ignition and Extinction) fire safety experiment inside the International Space Station’s combustion integrated rack Credit: NASA Combating Antibiotic Resistance
Resistance to antibiotics is as much of a concern for astronauts in space as it is for humans on Earth. Research determined that the impacts of microgravity can weaken a human’s immune system during spaceflight, which can lead to an increase of infection and illness for those living on the space station.
The GEARS (Genomic Enumeration of Antibiotic Resistance in Space) investigation scans the orbiting outpost for bacteria resistant to antibiotics and these organisms are studied to learn how they thrive and adapt to microgravity. Research results could help increase the safety of astronauts on future missions as well as provide clues to improving human health on Earth.
A sample media plate pictured aboard the International Space Station. The GEARS (Genomic Enumeration of Antibiotic Resistance in Space) investigation surveys the orbiting laboratory for antibiotic-resistant organisms. Genetic analysis could provide knowledge that informs measures to protect astronauts on future long-duration missions Credit: NASA Understanding Inflammation and Blood Clotting
Microgravity takes a toll on the human body and studies have shown that astronauts have had cases of inflammation and abnormally regulated blood clotting. The MeF-1 (Megakaryocytes Orbiting in Outer Space and Near Earth: The MOON Study (Megakaryocyte Flying-One)) investigation will conduct research on how the conditions in microgravity can impact the creation and function of platelets and bone-marrow megakaryocytes. Megakaryocytes, and their progeny, platelets, are key effector cells bridging the inflammatory, immune, and hemostatic continuum.
This experiment could help scientists learn about the concerns caused by any changes in the formation of clots, inflammation, and immune responses both on Earth and during spaceflight.
A scanning electron-microscopy image of human platelets taken at the NASA Space Radiation Laboratory NASA Space Radiation Laboratory Building the Space Salad Bar
The work continues to grow food in the harsh environment of space that is both nutritious and safe for humans to consume. With Plant Habitat-07, research continues on ‘Outredgeous’ romaine lettuce, first grown on the International Space Station in 2014.
This experiment will sprout this red lettuce in microgravity in the space station’s Advanced Plant Habitat and study how optimal and suboptimal moisture conditions impact plant growth, nutrient content, and the plant microbiome. The knowledge gained will add to NASA’s history of growing vegetables in space and could also benefit agriculture on Earth.
Pace crop production scientist Oscar Monje harvests Outredgeous romaine lettuce for preflight testing of the Plant Habitat-07 experiment inside a laboratory at the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida NASA/Ben Smegelsky Mixing Moss with Space Radiation
ARTEMOSS (ANT1 Radiation Tolerance Experiment with Moss in Orbit on the Space Station) continues research that started on Earth with samples of Antarctic moss that underwent simulated solar radiation at the NASA Space Radiation Lab at Brookhaven National Lab in Upton, New York.
After exposure to radiation some of the moss samples will spend time on the orbiting outpost in the microgravity environment and some will remain on the ground in the 1g environment. ARTEMOSS will study how Antarctic moss recovers from any potential damage from ionizing radiation exposure when plants remain on the ground and when plants grow in spaceflight microgravity. This study leads the way in understanding the effects of combined simulated cosmic ionizing radiation and spaceflight microgravity on live plants, providing more clues to plant performance in exploration missions to come.
An example of moss plants grown for the ARTEMOSS mission Credit: NASA Enabling Communication in Space Between Quantum Computers
The SEAQUE (Space Entanglement and Annealing Quantum Experiment) will experiment with technologies that, if successful, will enable communication on a quantum level using entanglement. Researchers will focus on validating in space a new technology, enabling easier and more robust communication between two quantum systems across large distances. The research from this experiment could lead to developing building blocks for communicating between equipment such as quantum computers with enhanced security.
A quantum communications investigation, called SEAQUE (Space Entanglement and Annealing Quantum Experiment), is pictured as prepared for launch to the International Space Station on NASA’s SpaceX 31st commercial resupply services mission. The investigation is integrated on a MISSE-20 (Materials International Space Station Experiment) device, which is a platform for experiments on the outside of space station exposing instrumentation directly to the space environment. SEAQUE will conduct experiments in quantum entanglement while being exposed to the radiation environment of space Credit: NASA Related resources:
SoFIE-MIST (Solid Fuel Ignition and Extinction – Material Ignition and Suppression Test) SoFIE (Solid Fuel Ignition and Extinction) | Glenn Research Center | NASA GEARS Space Station to Host ‘Self-Healing’ Quantum Communications Tech Demo – NASA MeF1 (Megakaryocyte Flying-One) ARTEMOSS NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
Explore More
3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon
Article
22 hours ago
2 min read NASA Reveals Prototype Telescope for Gravitational Wave Observatory
Article
2 days ago
2 min read Hubble Captures a New View of Galaxy M90
Article
6 days ago
View the full article
-
By NASA
On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.Credit: NASA NASA’s Orion spacecraft is designed to keep astronauts safe in deep space, protecting them from the unforgiving environment far from Earth. During the uncrewed Artemis I mission, researchers from NASA, along with several collaborators, flew payloads onboard Orion to measure potential radiation exposure to astronauts.
Radiation measurements were taken inside Orion by 5,600 passive sensors and 34 active radiation detectors during its 25.5-day mission around the Moon and back, which provided important data on exposure within the Earth’s Van Allen radiation belt. These detailed findings were published in a recent scientific article through a collaborative effort by NASA’s Space Radiation Analysis Group, the DLR (German Space Center), and ESA (European Space Agency). The measurements show that while radiation exposure can vary depending on location within Orion, the spacecraft can protect its crew from potentially hazardous radiation levels during lunar missions.
Space radiation could pose major risks to long-duration human space flights, and the findings from the Artemis I mission represent a crucial step toward future human exploration beyond low Earth orbit, to the Moon, and eventually to Mars.
NASA’s HERA (Hybrid Electronic Radiation Assessor) and Crew Active Dosimeter, which were tested previously on the International Space Station, and ESA’s Active Dosimeter, were among the instruments used to measure radiation inside Orion. HERA’s radiation sensor can warn crew members need to take shelter in the case of a radiation event, such as a solar flare. The Crew Active Dosimeter can collect real-time radiation dose data for astronauts and transmit it back to Earth for monitoring. Radiation measurements were conducted in various areas of the spacecraft, each offering different levels of shielding.
This high-resolution image captures the inside of the Orion crew module on flight day one of the Artemis I mission. At left is Commander Moonikin Campos, a purposeful passenger equipped with sensors to collect data that will help scientists and engineers understand the deep-space environment for future Artemis missions. Credit: NASA In addition, the Matroshka AstroRad Radiation Experiment, a collaboration between NASA and DLR, involved radiation sensors placed on and inside two life-sized manikin torsos to simulate the impact of radiation on human tissue. These manikins enabled measurements of radiation doses on various body parts, providing valuable insight into how radiation may affect astronauts traveling to deep space.
Two manikins are installed in the passenger seats inside the Artemis I Orion crew module atop the Space Launch System rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Aug. 8, 2022. As part of the Matroshka AstroRad Radiation Experiment (MARE) investigation, the two female manikins – Helga and Zohar – are equipped with radiation detectors, while Zohar also wears a radiation protection vest, to determine the radiation risk on its way to the Moon. Credit: NASA
Researchers found that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions. Though the spacecraft’s radiation shielding is effective, the range of exposure can greatly vary based on spacecraft orientation in specific environments. When Orion altered its orientation during an engine burn of the Interim Cryogenic Propulsion Stage, radiation levels dropped nearly in half due to the highly directional nature of the radiation in the Van Allen belt.
“These radiation measurements show that we have an effective strategy for managing radiation risks in the Orion spacecraft. However, key challenges remain, especially for long-duration spaceflights and the protection of astronauts on spacewalks,” said Stuart George, NASA’s lead author on the paper.
NASA’s long-term efforts and research in mitigating space radiation risks are ongoing, as radiation measurements on future missions will depend heavily on spacecraft shielding, trajectory, and solar activity. The same radiation measurement hardware flown on Artemis I will support the first crewed Artemis mission around the Moon, Artemis II, to better understand the radiation exposure seen inside Orion and ensure astronaut safety to the Moon and beyond.
For more information on NASA’s Artemis campaign, visit:
https://www.nasa.gov/artemis
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.