Members Can Post Anonymously On This Site
Satellite radar interferometry effective for mapping crops
-
Similar Topics
-
By European Space Agency
Two spacecraft flying as one – that is the goal of European Space Agency’s Proba-3 mission. Earlier this week, the eclipse-maker moved a step closer to achieving that goal, as both spacecraft aligned with the Sun, maintaining their relative position for several hours without any control from the ground.
View the full article
-
By NASA
Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 6 Min Read NASA Uses Advanced Radar to Track Groundwater in California
The Friant-Kern Canal supports water management in California’s San Joaquin Valley. A new airborne campaign is using NASA radar technology to understand how snowmelt replenishes groundwater in the area. Credits:
Bureau of Reclamation Where California’s towering Sierra Nevada surrender to the sprawling San Joaquin Valley, a high-stakes detective story is unfolding. The culprit isn’t a person but a process: the mysterious journey of snowmelt as it travels underground to replenish depleted groundwater reserves.
The investigator is a NASA jet equipped with radar technology so sensitive it can detect ground movements thinner than a nickel. The work could unlock solutions to one of the American West’s most pressing water challenges — preventing groundwater supplies from running dry.
“NASA’s technology has the potential to give us unprecedented precision in measuring where snowmelt is recharging groundwater,” said Erin Urquhart, program manager for NASA’s Earth Action Water Resources program at NASA Headquarters in Washington. “This information is vital for farmers, water managers, and policymakers trying to make the best possible decisions to protect water supplies for agriculture and communities.”
Tracking Water Beneath the Surface
In late February, a NASA aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) conducted the first of six flights planned for this year, passing over a roughly 25-mile stretch of the Tulare Basin in the San Joaquin Valley, where foothills meet farmland. It’s a zone experts think holds a key to maintaining water supplies for one of America’s most productive agricultural regions.
Much of the San Joaquin Valley’s groundwater comes from the melting of Sierra Nevada snow. “For generations, we’ve been managing water in California without truly knowing where that meltwater seeps underground and replenishes groundwater,” said Stanford University geophysicist and professor Rosemary Knight, who is leading the research.
This image from the MODIS instrument on NASA’s Terra satellite, captured on March 8, 2025, shows the Tulare Basin area in Southern California, where foothills meet farmlands. The region is a crucial area for groundwater recharge efforts aimed at making the most of the state’s water resources. Credits: NASA Earth Observatory image by Michala Garrison, using MODIS data from NASA EOSDIS LANCE and GIBS/Worldview. The process is largely invisible — moisture filtering through rock and sediment, and vanishing beneath orchards and fields. But as the liquid moves downhill, it follows a pattern. Water flows into rivers and streams, some of it eventually seeping underground at the valley’s edge or as the waterways spread into the valley. As the water moves through the ground, it can create slight pressure that in turn pushes the surface upward. The movement is imperceptible to the human eye, but NASA’s advanced radar technology can detect it.
“Synthetic aperture radar doesn’t directly see water,” explained Yunling Lou, who leads the UAVSAR program at NASA’s Jet Propulsion Laboratory in Southern California. “We’re measuring changes in surface elevation — smaller than a centimeter — that tell us where the water is.”
These surface bulges create what Knight calls an “InSAR recharge signature.” By tracking how these surface bulges migrate from the mountains into the valley, the team hopes to pinpoint where groundwater replenishment occurs and, ultimately, quantify the amount of water naturally recharging the system.
Previous research using satellite-based InSAR (Interferometric Synthetic Aperture Radar) has shown that land in the San Joaquin Valley uplifts and subsides with the seasons, as the groundwater is replenished by Sierra snowmelt. But the satellite radar couldn’t uniquely identify the recharge paths. Knight’s team combined the satellite data with images of underground sediments, acquired using an airborne electromagnetic system, and was able to map the major hidden subsurface water pathways responsible for aquifer recharge.
NASA’s airborne UAVSAR system will provide even more detailed data, potentially allowing researchers to have a clearer view of where and how fast water is soaking back into the ground and recharging the depleted aquifers.
In 2025, NASA’s UAVSAR system on a Gulfstream-III jet (shown over a desert landscape) is conducting six planned advanced radar surveys to map how and where groundwater is recharging parts of California’s southern San Joaquin Valley. Credits: NASA Supporting Farmers and Communities
California’s Central Valley produces over a third of America’s vegetables and two-thirds of its fruits and nuts. The southern portion of this agricultural powerhouse is the San Joaquin Valley, where most farming operations rely heavily on groundwater, especially during drought years.
Water managers have occasionally been forced to impose restrictions on groundwater pumping as aquifer levels drop. Some farmers now drill increasingly deeper wells, driving up costs and depleting reserves.
“Knowing where recharge is happening is vital for smart water management,” said Aaron Fukuda, general manager of the Tulare Irrigation District, a water management agency in Tulare County that oversees irrigation and groundwater recharge projects.
“In dry years, when we get limited opportunities, we can direct flood releases to areas that recharge efficiently, avoiding places where water would just evaporate or take too long to soak in,” Fukuda said. “In wetter years, like 2023, it’s even more crucial — we need to move water into the ground as quickly as possible to prevent flooding and maximize the amount absorbed.”
NASA’s Expanding Role in Water Monitoring
NASA’s ongoing work to monitor and manage Earth’s water combines a range of cutting-edge technologies that complement one another, each contributing unique insights into the challenges of groundwater management.
The upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission, a joint project between NASA and the Indian Space Research Organisation (ISRO) set to launch in coming months, will provide global-scale radar data to track land and ice surface changes — including signatures of groundwater movement — every 12 days.
The NISAR satellite (shown in this artist’s concept) has a large radar antenna designed to monitor Earth’s land and ice changes with unprecedented detail. Credits: NASA/JPL-Caltech In parallel, the GRACE satellites — operated by the German Aerospace Center, German Research Centre for Geosciences, and NASA — have transformed global groundwater monitoring by detecting tiny variations in Earth’s gravity, offering a broad view of monthly water storage changes across large regions.
The Gravity Recovery and Climate Experiment and Follow-On (GRACE and GRACE-FO) missions have helped expose major declines in aquifers, including in California’s Central Valley. But their coarser resolution calls for complementary tools that can, for example, pinpoint recharge hotspots with greater precision.
Together, these technologies form a powerful suite of tools that bridge the gap between regional-scale monitoring and localized water management. NASA’s Western Water Applications Office (WWAO) also plays a key role in ensuring that this wealth of data is accessible to water managers and others, offering platforms like the Visualization of In-situ and Remotely-Sensed Groundwater Observation (VIRGO) dashboard to facilitate informed decision-making.
“Airborne campaigns like this one in the San Joaquin test how our technology can deliver tangible benefits to American communities,” said Stephanie Granger, WWAO’s director at NASA’s Jet Propulsion Laboratory. “We partner with local water managers to evaluate tools that have the potential to strengthen water supplies across the Western United States.”
By Emily DeMarco
NASA Headquarters
About the Author
Emily DeMarco
Share
Details
Last Updated Mar 20, 2025 Related Terms
Earth Droughts Floods Water on Earth Explore More
6 min read NASA Data Supports Everglades Restoration
Florida’s coastal wetlands face new threats as sea levels and temperatures climb. NASA’s BlueFlux Campaign…
Article
6 days ago
8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
Article
7 days ago
5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Located off the coast of Ecuador, Paramount seamount is among the kinds of ocean floor features that certain ocean-observing satellites like SWOT can detect by how their gravitational pull affects the sea surface.NOAA Okeanos Explorer Program More accurate maps based on data from the SWOT mission can improve underwater navigation and result in greater knowledge of how heat and life move around the world’s ocean.
There are better maps of the Moon’s surface than of the bottom of Earth’s ocean. Researchers have been working for decades to change that. As part of the ongoing effort, a NASA-supported team recently published one of the most detailed maps yet of the ocean floor, using data from the SWOT (Surface Water and Ocean Topography) satellite, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales).
Ships outfitted with sonar instruments can make direct, incredibly detailed measurements of the ocean floor. But to date, only about 25% of it has been surveyed in this way. To produce a global picture of the seafloor, researchers have relied on satellite data.
This animation shows seafloor features derived from SWOT data on regions off Mexico, South America, and the Antarctic Peninsula. Purple denotes regions that are lower relative to higher areas like seamounts, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.
NASA’s Scientific Visualization Studio Why Seafloor Maps Matter
More accurate maps of the ocean floor are crucial for a range of seafaring activities, including navigation and laying underwater communications cables. “Seafloor mapping is key in both established and emerging economic opportunities, including rare-mineral seabed mining, optimizing shipping routes, hazard detection, and seabed warfare operations,” said Nadya Vinogradova Shiffer, head of physical oceanography programs at NASA Headquarters in Washington.
Accurate seafloor maps are also important for an improved understanding of deep-sea currents and tides, which affect life in the abyss, as well as geologic processes like plate tectonics. Underwater mountains called seamounts and other ocean floor features like their smaller cousins, abyssal hills, influence the movement of heat and nutrients in the deep sea and can attract life. The effects of these physical features can even be felt at the surface by the influence they exert on ecosystems that human communities depend on.
This map of seafloor features like abyssal hills in the Indian Ocean is based on sea surface height data from the SWOT satellite. Purple denotes regions that are lower relative to higher areas like abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This global map of seafloor features is based on ocean height data from the SWOT satellite. Purple denotes regions that are lower compared to higher features such as seamounts and abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This map of ocean floor features like seamounts southwest of Acapulco, Mexico, is based on sea surface height data from SWOT. Purple denotes regions that are lower relative to higher areas like seamounts, indicated with green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory Mapping the seafloor isn’t the SWOT mission’s primary purpose. Launched in December 2022, the satellite measures the height of water on nearly all of Earth’s surface, including the ocean, lakes, reservoirs, and rivers. Researchers can use these differences in height to create a kind of topographic map of the surface of fresh- and seawater. This data can then be used for tasks such as assessing changes in sea ice or tracking how floods progress down a river.
“The SWOT satellite was a huge jump in our ability to map the seafloor,” said David Sandwell, a geophysicist at Scripps Institution of Oceanography in La Jolla, California. He’s used satellite data to chart the bottom of the ocean since the 1990s and was one of the researchers responsible for the SWOT-based seafloor map, which was published in the journal Science in December 2024.
How It Works
The study authors relied the fact that because geologic features like seamounts and abyssal hills have more mass than their surroundings, they exert a slightly stronger gravitational pull that creates small, measurable bumps in the sea surface above them. These subtle gravity signatures help researchers predict the kind of seafloor feature that produced them.
Through repeated observations — SWOT covers about 90% of the globe every 21 days — the satellite is sensitive enough to pick up these minute differences, with centimeter-level accuracy, in sea surface height caused by the features below. Sandwell and his colleagues used a year’s worth of SWOT data to focus on seamounts, abyssal hills, and underwater continental margins, where continental crust meets oceanic crust.
Previous ocean-observing satellites have detected massive versions of these bottom features, such as seamounts over roughly 3,300 feet (1 kilometer) tall. The SWOT satellite can pick up seamounts less than half that height, potentially increasing the number of known seamounts from 44,000 to 100,000. These underwater mountains stick up into the water, influencing deep sea currents. This can concentrate nutrients along their slopes, attracting organisms and creating oases on what would otherwise be barren patches of seafloor.
Looking Into the Abyss
The improved view from SWOT also gives researchers more insight into the geologic history of the planet.
“Abyssal hills are the most abundant landform on Earth, covering about 70% of the ocean floor,” said Yao Yu, an oceanographer at Scripps Institution of Oceanography and lead author on the paper. “These hills are only a few kilometers wide, which makes them hard to observe from space. We were surprised that SWOT could see them so well.”
Abyssal hills form in parallel bands, like the ridges on a washboard, where tectonic plates spread apart. The orientation and extent of the bands can reveal how tectonic plates have moved over time. Abyssal hills also interact with tides and deep ocean currents in ways that researchers don’t fully understand yet.
The researchers have extracted nearly all the information on seafloor features they expected to find in the SWOT measurements. Now they’re focusing on refining their picture of the ocean floor by calculating the depth of the features they see. The work complements an effort by the international scientific community to map the entire seafloor using ship-based sonar by 2030. “We won’t get the full ship-based mapping done by then,” said Sandwell. “But SWOT will help us fill it in, getting us close to achieving the 2030 objective.”
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-040
Share
Details
Last Updated Mar 19, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Earth Jet Propulsion Laboratory Oceans Explore More
6 min read ESA Previews Euclid Mission’s Deep View of ‘Dark Universe’
Article 9 hours ago 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
Article 1 day ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Marking another step towards new insights into Earth’s forests and their role in the carbon cycle, ESA’s groundbreaking Biomass satellite has arrived at Europe's Spaceport in French Guiana, to be prepared for liftoff on a Vega-C rocket at the end of April.
View the full article
-
By Space Force
The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.