Jump to content

SecAF selects Huntsville, Alabama, as preferred location to host USSPACECOM


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has selected four new crew members to participate in the final simulated mission to Mars in 2024 inside the agency’s Human Exploration Research Analog. From left are Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder.Credit: C7M4 Crew NASA selected a crew of four research volunteers to participate in its last simulated mission to Mars in 2024 within a habitat at the agency’s Johnson Space Center in Houston.
      Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder will step into the 650-square-foot HERA (Human Exploration Research Analog) facility on Friday, Nov. 1. Once inside, the team will live and work like astronauts for 45 days. The crew will exit the facility on Monday, Dec. 16, after simulating their return to Earth. Jordan Hundley and Robert Wilson also were named as alternate crew members.
      Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond. The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks.
      The four volunteers will carry out scientific research and operational tasks throughout their simulated mission, including raising shrimp, growing vegetables, and “walking” on the surface of Mars using virtual reality. They will also experience communication delays lasting up to five minutes as they “near” Mars, allowing researchers to see how crews may respond to the type of delays astronauts will encounter in deep space. Astronauts traveling to the Red Planet may encounter one-way communication delays lasting as long as 20 minutes.
      As with the previous HERA missions, crew members will conduct 18 human health studies during the mission through NASA’s Human Research Program. Collectively, the work helps scientists understand how a spaceflight-like environment contributes to the physiological, behavioral, and psychological health of crew members. Insights gleaned from the studies will allow researchers to develop and test strategies aimed at helping astronauts overcome obstacles on deep space missions.
      Primary Crew
      Obaid Alsuwaidi
      Obaid Alsuwaidi serves as captain engineer for the United Arab Emirates’ (UAE) Ministry of Defense. In this role, he provides guidance in civil and marine engineering and addresses challenges facing the organization. Previously, Alsuwaidi worked as a project manager for the defense ministry, helping to streamline productivity, establish high standards of professionalism, and build a team of experts to serve the UAE’s needs.
      Alsuwaidi earned a bachelor’s degree in Engineering from Western Sydney University in Australia, followed by a master’s degree in Civil and Environmental Engineering from George Washington University in Washington.
      In his free time, Alsuwaidi enjoys horseback riding, swimming, and running.

      Kristen Magas
      Kristen Magas is an educator and engineer, currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts. She also mentors students involved in a NASA design and prototyping program, helping them develop and fabricate products to improve life in space on both International Space Station and Artemis missions. Magas was a finalist for the 2025 Massachusetts State Teacher of the Year.
      Magas received bachelor’s and master’s degrees in Civil and Environmental Engineering from Cornell University in Ithaca, New York. She also holds a master’s degree in Vocational Education from Westfield State University in Massachusetts. She has worked as a community college professor as well as a design engineer in municipal water and wastewater treatment.
      In her spare time, Magas enjoys coaching robotics and track and field, hiking, biking, and staying connected with her community. She has two children and resides in North Attleboro, Massachusetts with her husband of 25 years.

      Tiffany Snyder 
      Tiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats. She has more than 20 years of information technology and cybersecurity experience, working with the Air National Guard and as a special agent with the Defense Counterintelligence Security Agency. She joined NASA in 2018 as an IT specialist, and later served as the deputy chief information security officer at NASA’s Kennedy Space Center in Florida, providing cybersecurity oversight.
      Snyder holds a bachelor’s degree in Earth Science from the State University of New York at Buffalo and a master’s degree in Digital Forensics from the University of Central Florida in Orlando.
      In her spare time, she enjoys playing with her dogs — Artemis and Apollo, gardening, running, and visiting the beach with her family.

      Anderson Wilder
      Anderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology. His research focuses on team resiliency and human-machine interactions. He also works in the campus’s neuroscience lab, investigating how spaceflight contributes to neurobehavioral changes in astronauts.
      Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.
      Wilder received his bachelor’s degrees in Linguistics and in Psychology from Ohio State University in Columbus. He also holds master’s degrees in Space Studies from International Space University in Strasbourg, France, and in Aviation Human Factors from the Florida Institute of Technology. He is completing another master’s degree in Cognitive Experimental Psychology at Cleveland State University in Ohio.
      Outside of school, Wilder works as a parabolic flight coach, teaching people how to fly in reduced gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.
      Alternate Crew
      Jordan Hundley
      Jordan Hundley is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support. Prior to his current position, he focused on U.S. Department of Defense clients, performing model-based system engineering and serving as a subject matter expert for related operations.
      Hundley was commissioned into the U.S. Air Force through the Reserve Officers’ Training Corps program at the University of Central Florida in Orlando. While on active duty, he served as an intercontinental ballistic missile operations officer. He later joined the U.S. Air Force Reserve. Currently, he is a space operations officer with experience in space battle management and electromagnetic warfare.
      Hundley earned a master’s degree in Engineering Management from Embry-Riddle Aeronautical University in Daytona Beach, Florida. He is currently pursuing a second master’s degree in Systems Engineering at the university.
      Hundley holds a private pilot license and is a certified rescue diver. In his spare time, he enjoys hiking and camping, researching theology, and learning musical instruments.

      Robert Wilson
      Robert Wilson is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. He leads work enhancing human-machine collaborations, developing human prediction models, and integrating that technology into virtual reality and robotic systems designed to operate in isolated, constrained, and extreme environments. His human-machine teaming expertise also extends into responsible artificial intelligence development. He recently participated in a United Nations Roundtable discussion about artificial intelligence in security and defense.
      Wilson received his bachelor’s and master’s degrees in Biomedical Engineering from Purdue University in 2013 and 2015, respectively. He earned his doctorate in Mechanical Engineering from the University of Colorado Boulder in 2020.
      Outside of work, Wilson is an avid outdoors enthusiast. He enjoys scuba diving, winter camping, backcountry skiing, and hiking through the woods or mountains throughout the year. At home, he also likes to tinker in computer networking and self-hosted systems.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.
      For more information about human research at NASA, visit:
      https://www.nasa.gov/hrp
      Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 2 days ago 2 min read Station Science Top News: Oct. 11, 2024
      Article 3 days ago 4 min read Spooky on the Space Station
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      3 min read
      NASA Selects Two Teams to Advance Life Sciences Research in Space 
      NASA announced two awards Thursday to establish scientific consortia – multi-institutional coalitions to conduct ground-based studies that help address the agency’s goals of maintaining a sustained human presence in space. These consortia will focus on biological systems research in the areas of animal and human models, plants, and microbiology. When fully implemented, the awards for these consortia will total about $5 million. 
      Space biology efforts at NASA use the unique environment of space to conduct experiments impossible to do on Earth. Such research not only supports the health and welfare of astronauts, but results in breakthroughs on diseases such as cancer and neurodegenerative disorders to help protect humanity down on the ground.  
      The awards for the two consortia are for the following areas:  
      Studying space biosphere. The Biology in Space: Establishing Networks for DUrable & REsilient Systems consortium involves a collaborative effort between human/animal, plant, and microbial biologists to ensure an integrated view of the space flight biosphere by enhancing data acquisition, modeling, and testing. It will include participation of more than thirty scientists and professionals working together from at least three institutions. Led by Kristi Morgansen at the University of Washington in Seattle, Washington.    Converting human waste into materials for in-space biomanufacturing. The Integrative Anaerobic Digestion and Phototrophic Biosystem for Sustainable Space Habitats and Life Supports consortium will develop an anaerobic digestion process that converts human waste into organic acids and materials that can be used for downstream biomanufacturing applications in space. It will include eight scientists from six different institutions in three different states, including Delaware and Florida. The consortium is led by Yinjie Tang at Washington University in St. Louis, Missouri.    Proposals for these consortia were submitted in response to ROSES 2024 Program Element E.11 Consortium in Biological Sciences for a consortium with biological sciences expertise to carry out research investigations and conduct activities that address NASA’s established interests in space life sciences.  
      NASA’s Space Biology Program within the agency’s Biological and Physical Sciences division conducts research across a wide spectrum of biological organization and model systems to probe underlying mechanisms by which organisms acclimate to stressors encountered during space exploration (including microgravity, ionizing radiation, and elevated concentrations of carbon dioxide). This research informs how biological systems regulate and sustain growth, metabolism, reproduction, and development in space and how they repair damage and protect themselves from infection and disease. 
      For more information about NASA’s fundamental space-based research, visit https://science.nasa.gov/biological-physical
      Share








      Details
      Last Updated Oct 17, 2024 Contact NASA Science Editorial Team Location NASA Headquarters Related Terms
      Biological & Physical Sciences For Researchers Research Opportunities in Space and Earth Sciences (ROSES) Science & Research View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts a potential volcanic moon between the exoplanet WASP-49 b, left, and its parent star. New evidence indicating that a massive sodium cloud observed near WASP-49 b is produced by neither the planet nor the star has prompted researchers to ask if its origin could be an exomoon.NASA/JPL-Caltech The existence of a moon located outside our solar system has never been confirmed but a new NASA-led study may provide indirect evidence for one.
      New research done at NASA’s Jet Propulsion Laboratory reveals potential signs of a rocky, volcanic moon orbiting an exoplanet 635 light-years from Earth. The biggest clue is a sodium cloud that the findings suggest is close to but slightly out of sync with the exoplanet, a Saturn-size gas giant named WASP-49 b, although additional research is needed to confirm the cloud’s behavior. Within our solar system, gas emissions from Jupiter’s volcanic moon Io create a similar phenomenon.
      Although no exomoons (moons of planets outside our solar system) have been confirmed, multiple candidates have been identified. It’s likely these planetary companions have gone undetected because they are too small and dim for current telescopes to detect.
      The sodium cloud around WASP-49 b was first detected in 2017, catching the attention of Apurva Oza, formerly a postdoctoral researcher at NASA’s Jet Propulsion Laboratory and now a staff scientist at Caltech, which manages JPL. Oza has spent years investigating how exomoons might be detected via their volcanic activity. For example, Io, the most volcanic body in our solar system, constantly spews sulfur dioxide, sodium, potassium, and other gases that can form vast clouds around Jupiter up to 1,000 times the giant planet’s radius. It’s possible that astronomers looking at another star system could detect a gas cloud like Io’s even if the moon itself were too small to see.
      Exomoons — moons around planets outside our solar system — are most likely too small to observe directly with current technology. In this video, learn how scientists tracked the motion of a sodium cloud 635 light-years away and found that it could be created by volcanos on a potential exomoon. NASA/JPL-Caltech Both WASP-49 b and its star are composed mostly of hydrogen and helium, with trace amounts of sodium. Neither contains enough sodium to account for the cloud, which appears to be coming from a source that is producing roughly 220,000 pounds (100,000 kilograms) of sodium per second. Even if the star or planet could produce that much sodium, it’s unclear what mechanism could eject it into space.
      Could the source be a volcanic exomoon? Oza and his colleagues set out to try to answer that question. The work immediately proved challenging because from such a great distance, the star, planet, and cloud often overlap and occupy the same tiny, faraway point in space. So the team had to watch the system over time.
      A Cloud on the Move
      As detailed in a new study published in the Astrophysical Journal Letters, they found several pieces of evidence that suggest the cloud is created by a separate body orbiting the planet, though additional research is needed to confirm the cloud’s behavior. For example, twice their observations indicated the cloud suddenly increased in size, as if being refueled, when it was not next to the planet.
      New NASA-led research suggests a sodium cloud seen around the exoplanet WASP-49 b might be created by a volcanic moon, which is depicted in this artist’s concept. Jupiter’s fiery moon Io produces a similar cloud. NASA/JPL-Caltech They also observed the cloud moving faster than the planet in a way that would seem impossible unless it was being generated by another body moving independent of, and faster, than the planet.
      “We think this is a really critical piece of evidence,” said Oza. “The cloud is moving in the opposite direction that physics tells us it should be going if it were part of the planet’s atmosphere.”
      While these observations have intrigued the research team, they say they would need to observe the system for longer to be sure of the cloud’s orbit and structure.
      A Chance of Volcanic Clouds
      For part of their sleuthing, the researchers used the European Southern Observatory’s Very Large Telescope in Chile. Oza’s co-author Julia Seidel, a research fellow at the observatory, established that the cloud is located high above the planet’s atmosphere, much like the cloud of gas Io produces around Jupiter.  
      They also used a computer model to illustrate the exomoon scenario and compare it to the data. The exoplanet WASP-49 b orbits the star every 2.8 days with clocklike regularity, but the cloud appeared and disappeared behind the star or behind the planet at seemingly irregular intervals. Using their model, Oza and team showed that a moon with an eight-hour orbit around the planet could explain the cloud’s motion and activity, including the way it sometimes seemed to move in front of the planet and did not seem to be associated with a particular region of the planet.
      “The evidence is very compelling that something other than the planet and star are producing this cloud,” said Rosaly Lopes, a planetary geologist at JPL who co-authored the study with Oza. “Detecting an exomoon would be quite extraordinary, and because of Io, we know that a volcanic exomoon is possible.” 
      A Violent End
      On Earth, volcanoes are driven by heat in its core left over from the planet’s formation. Io’s volcanoes, on the other hand, are driven by Jupiter’s gravity, which squeezes the moon as it gets closer to the planet then reduces its “grip” as the moon moves away. This flexing heats the small moon’s interior, leading to a process called tidal volcanism.
      If WASP-49 b has a moon similar in size to Earth’s, Oza and team estimate that the rapid loss of mass combined with the squeezing from the planet’s gravity will eventually cause it to disintegrate.
      “If there really is a moon there, it will have a very destructive ending,” said Oza.  
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2024-135
      Share
      Details
      Last Updated Oct 10, 2024 Related Terms
      Exoplanets Astrophysics Exoplanet Discoveries Gas Giant Exoplanets Jupiter Jupiter Moons Explore More
      4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball
      Astronomers have observed Jupiter’s legendary Great Red Spot (GRS), an anticyclone large enough to swallow…
      Article 22 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape
      This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into…
      Article 6 days ago 4 min read Via NASA Plane, Scientists Find New Gamma-ray Emission in Storm Clouds
      There’s more to thunderclouds than rain and lightning. Thunderclouds can produce intense bursts of gamma…
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      An astronaut aboard the International Space Station shot this photo of large meanders of the Alabama River while orbiting over the southern United States. The river’s smooth water surface reflects sunlight back toward the astronaut’s camera, producing an optical phenomenon known as sunglint.NASA/Woody Hoburg In this June 26, 2023, photo taken from the International Space Station, sunlight shines off the smooth waters of the Alabama River in a phenomenon known as sunglint. When photographing Earth, astronauts often take advantage of sunglint’s tendency to increase the contrast between water surfaces and surrounding land surfaces.
      In the 1960s, the Alabama River was dammed, creating Dannelly Reservoir (the large shining area at center left). Construction of the dam also raised water levels upriver. This resulted in flooding at several points along the river. These flooded zones are typical of floodplains—the low, flat areas immediately next to larger rivers. In this image, flooded zones appear as irregular, bright shapes extending away from the river, like at Gee’s Bend (center bottom).
      Text Credit: Justin Wilkinson
      Image Credit: NASA/Woody Hoburg
      View the full article
    • By NASA
      Credit: NASA Two proposals for missions to observe X-ray and far-infrared wavelengths of light from space were selected by NASA for additional review, the agency announced Thursday. Each proposal team will receive $5 million to conduct a 12-month mission concept study. After detailed evaluation of those studies, NASA expects to select one concept in 2026 to proceed with construction, for a launch in 2032.
      The resulting mission will become the first in a new class of NASA astrophysics missions within the agency’s longstanding Explorers Program. The new mission class, Probe Explorers, will fill a gap between flagship and smaller-scale missions in NASA’s exploration of the secrets of the universe.
      “NASA’s Explorers Program brings out some of the most creative ideas for missions that help us reveal the unknown about our universe. Establishing this new line of missions – the largest our Astrophysics program has ever competed – has taken that creativity to new heights,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Both of the selected concepts could enable ground-breaking science responsive to the top astrophysics priorities of the decade, develop key technologies for future flagship missions, and offer opportunities for the entire community to use the new observatory, for the benefit of all.”
      The National Academies of Sciences, Engineering, and Medicine’s 2020 Decadal Survey, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, recommended NASA establish this new mission class, with the first mission observing either X-ray or far-infrared wavelengths of light. Mission costs for the new Probe Explorers are capped at $1 billion each, not including the cost of the rocket, launch services, or any contributions.
      NASA evaluated Probe Explorers proposals based on their scientific merit in alignment with the Decadal Survey’s recommendations, feasibility of development plans, and use of technologies that could support the development of future large missions.
      The selected proposals are:
      Advanced X-ray Imaging Satellite
      This mission would be an X-ray imaging observatory with a large, flat field-of-view and high spatial resolution. It would study the seeds of supermassive black holes; investigate the process of stellar feedback, which influences how galaxies evolve; and help determine the power sources of a variety of explosive phenomena in the cosmos. The observatory would build on the successes of previous X-ray observatories, capturing new capabilities for X-ray imaging and imaging spectroscopy. Principal investigator: Christopher Reynolds, University of Maryland, College Park Project management: NASA’s Goddard Space Flight Center in Greenbelt, Maryland Probe far-Infrared Mission for Astrophysics
      This observatory would be a 5.9-foot (1.8-meter) telescope studying far-infrared wavelengths, helping bridge the gap between existing infrared observatories, such as NASA’s James Webb Space Telescope, and radio telescopes. By studying radiant energy that only emerges in the far-infrared, the mission would address questions about the origins and growth of planets, supermassive black holes, stars, and cosmic dust. Principal investigator: Jason Glenn, NASA Goddard Project management: NASA’s Jet Propulsion Laboratory in Southern California The Explorers Program is the oldest continuous NASA program designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs. Since the Explorer 1 launch in 1958, which discovered Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators.
      The Explorers Program is managed by NASA Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe.
      For more information about the Explorers Program, visit:
      https://explorers.gsfc.nasa.gov
      -end-
      Alise Fisher
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Oct 03, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Astrophysics Division Astrophysics Explorers Program View the full article
  • Check out these Videos

×
×
  • Create New...