Members Can Post Anonymously On This Site
Four Airmen and Guardians among BEYA winners, CSAF gives keynote
-
Similar Topics
-
By NASA
Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP This artist’s concept pictures the planets orbiting Barnard’s Star, as seen from close to the surface of one of them. Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld The Discovery
Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest to ours after the three-star Alpha Centauri system. Barnard’s is the nearest single star.
Key Facts
Barnard’s Star, six light-years away, is notorious among astronomers for a history of false planet detections. But with the help of high-precision technology, the latest discovery — a family of four — appears to be solidly confirmed. The tiny size of the planets is also remarkable: Capturing evidence of small worlds at great distance is a tall order, even using state-of-the-art instruments and observational techniques.
Details
Watching for wobbles in the light from a star is one of the leading methods for detecting exoplanets — planets orbiting other stars. This “radial velocity” technique tracks subtle shifts in the spectrum of starlight caused by the gravity of a planet pulling its star back and forth as the planet orbits. But tiny planets pose a major challenge: the smaller the planet, the smaller the pull. These four are each between about a fifth and a third as massive as Earth. Stars also are known to jitter and quake, creating background “noise” that potentially could swamp the comparatively quiet signals from smaller, orbiting worlds.
Astronomers measure the back-and-forth shifting of starlight in meters per second; in this case the radial velocity signals from all four planets amount to faint whispers — from 0.2 to 0.5 meters per second (a person walks at about 1 meter per second). But the noise from stellar activity is nearly 10 times larger at roughly 2 meters per second.
How to separate planet signals from stellar noise? The astronomers made detailed mathematical models of Barnard’s Star’s quakes and jitters, allowing them to recognize and remove those signals from the data collected from the star.
The new paper confirming the four tiny worlds — labeled b, c, d, and e — relies on data from MAROON-X, an “extreme precision” radial velocity instrument attached to the Gemini Telescope on the Maunakea mountaintop in Hawaii. It confirms the detection of the “b” planet, made with previous data from ESPRESSO, a radial velocity instrument attached to the Very Large Telescope in Chile. And the new work reveals three new sibling planets in the same system.
Fun Facts
These planets orbit their red-dwarf star much too closely to be habitable. The closest planet’s “year” lasts a little more than two days; for the farthest planet, it’s is just shy of seven days. That likely makes them too hot to support life. Yet their detection bodes well in the search for life beyond Earth. Scientists say small, rocky planets like ours are probably the best places to look for evidence of life as we know it. But so far they’ve been the most difficult to detect and characterize. High-precision radial velocity measurements, combined with more sharply focused techniques for extracting data, could open new windows into habitable, potentially life-bearing worlds.
Barnard’s star was discovered in 1916 by Edward Emerson Barnard, a pioneering astrophotographer.
The Discoverers
An international team of scientists led by Ritvik Basant of the University of Chicago published their paper on the discovery, “Four Sub-Earth Planets Orbiting Barnard’s Star from MAROON-X and ESPRESSO,” in the science journal, “The Astrophysical Journal Letters,” in March 2025. The planets were entered into the NASA Exoplanet Archive on March 13, 2025.
Share
Details
Last Updated Apr 01, 2025 Related Terms
Exoplanets Radial Velocity Terrestrial Exoplanets Keep Exploring Discover More Topics From NASA
Universe
Exoplanets
Search for Life
Exoplanet Catalog
This exoplanet encyclopedia — continuously updated, with more than 5,600 entries — combines interactive 3D models and detailed data on…
View the full article
-
By NASA
NASA asked artists to imagine the future of deep space exploration in artwork meant to inspire the Artemis Generation. The NASA Moon to Mars Architecture art challenge sought creative images that represent the agency’s bold vision for crewed exploration of the lunar surface and the Red Planet. The agency has selected the recipients of the art challenge competition.
This collage features all the winners of the NASA Moon to Mars Architecture Art Challenge.Jimmy Catanzaro, Jean-Luc Sabourin, Irene Magi, Pavlo Kandyba, Antonella Di Cristofaro, Francesco Simone, Mia Nickell, Lux Bodell, Olivia De Grande, Sophie Duan The challenge, hosted by contractor yet2 through NASA’s Prizes, Challenges, and Crowdsourcing program, was open to artists from around the globe. Guidelines asked artists to consider NASA’s Moon to Mars Architecture development effort, which uses engineering processes to distil NASA’s Moon to Mars Objectives into the systems needed to accomplish them. NASA received 313 submissions from 22 U.S. states and 47 countries.
The architecture includes four segments of increasing complexity. For this competition, NASA sought artistic representations of the two furthest on the timeline: the Sustained Lunar Evolution segment and the Humans to Mars segment.
The Sustained Lunar Evolution segment is an open canvas for exploration of the Moon, embracing new ideas, systems, and partners to grow to a long-term presence on the lunar surface. Sustained lunar evolution means more astronauts on the Moon for longer periods of time, increased opportunities for science, and even the large-scale production of goods and services derived from lunar resources. It also means increased cooperation and collaboration with international partners and the aerospace industry to build a robust lunar economy. The Humans to Mars segment will see the first human missions to Mars, building on the lessons we learn from exploring the Moon. These early missions will focus on Martian exploration and establishing the foundation for a sustained Mars presence. NASA architects are examining a wide variety of options for transportation, habitation, power generation, utilization of Martian resources, scientific investigations, and more. Final judging for the competition took place at NASA’s annual Architecture Concept Review meeting. That review brought together agency leadership from NASA mission directorates, centers, and technical authorities to review the 2024 updates to the Moon to Mars Architecture. NASA selected the winning images below during that review:
Sustained Lunar Evolution Segment Winners
First Place:
Jimmy Catanzaro – Henderson, Nevada
Second Place:
Jean-Luc Sabourin – Ottawa, Canada
Third Place (Tie):
Irene Magi – Prato, Italy
Pavlo Kandyba – Kyiv, Ukraine
Humans to Mars Segment Winners
First Place (Tie):
Antonella Di Cristofaro – Chieti, Italy
Francesco Simone – Gatteo, Italy
Third Place:
Mia Nickell – Suwanee, Georgia
Under 18 Submission Winners
First Place:
Lux Bodell – Minnetonka, Minnesota
Second Place:
Olivia De Grande – Milan, Italy
Third Place:
Sophie Duan – Ponte Vedra, Florida
The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.
View the full article
-
By NASA
“I’m hopeful anyone, regardless of their scientific background, could read a Hubble post and understand the gist of it and be interested in it,” said Elizabeth Tammi, social media lead for the Hubble Space Telescope. “I also read our stories with the eye of the potential audience member: What are they going to care about? What is going to bring them into this story? What is going to make them want to read more?”Credits: Courtesy of Elizabeth Tammi Name: Elizabeth Tammi
Title: Hubble Space Telescope Social Media Lead
Formal Job Classification: Communications Specialist
Organization: Hubble Space Telescope Operations (Code 441)
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I am the social media lead for the Hubble Space Telescope mission at Goddard. In short, Hubble is an orbiting observatory that’s been in low-Earth orbit for more than 30 years. It’s one of NASA’s flagship missions, probably one of its most iconic missions. Hubble has shaped our understanding of how we imagine the universe — visually how we think about it.
I run Hubble’s Twitter, Facebook, Instagram, and Flickr, along with various other multimedia and communications tasks. We’re a very close-knit team, so we collaborate a lot, both within our team, and with other missions across the agency as well.
I’m primarily focused on social media and figuring out how are we going to share our news. On any given day, I might also be working on a script, editing news releases, or working with other accounts on social media campaigns. It’s different every day, which I really like.
What is your educational background?
I went to Mercer University, which is in Macon, Georgia. I graduated in 2020 with a degree in journalism and creative writing. There, they have a great program called the Center for Collaborative Journalism, which allowed us to work in newsrooms for academic credit. That was really useful, especially in this field, getting that hands-on experience and getting published from my freshman year on. I was eventually able to intern at Goddard the summer before my senior year. I really don’t think that would have been possible if I hadn’t had the audio production experience that Mercer allowed me to get, along with just all aspects of journalism, media, and communications.
“Hubble is one of NASA’s flagship missions, probably one of its most iconic missions,” said Elizabeth Tammi, social media lead for the Hubble Space Telescope. “Hubble has shaped our understanding of how we imagine the universe — visually how we think about it.”Credits: Courtesy of Elizabeth Tammi How does your writing experience contribute to your role with Hubble?
I know how to write accessibly and in a straightforward manner. I’m hopeful anyone, regardless of their scientific background, could read a post and understand the gist of it and be interested in it. That’s the goal. I try to come up with interesting turns of phrase when I can. I also read our stories with the eye of the potential audience member: What are they going to care about? What is going to bring them into this story? What is going to make them want to read more?
Outside work, you’ve written and published books. What inspired you to decide to write?
There’s not a day I can remember where I wasn’t absolutely infatuated with books. I think my parents read to me long before I could even understand them. It was just always such a huge part of my life — and I loved, loved, loved reading. When I realized that actual people wrote books, then I knew I wanted to write. To be clear, I didn’t take real steps toward that until I was about 15, 16-ish years old, because I guess in my mind, I still had this idea that authors were more than human.
I’ve since had two novels published. Both are in the fantasy genre and earned complimentary reviews; my second novel even earned a Moonbeam Children’s Book Award.
“I know it can be intimidating, to think about NASA as a place to intern,” said Hubble Space Telescope social media lead Elizabeth Tammi. “If you have any interest in space, I think that’s the most important part: People who are passionate and interested in our space program.”Credits: Courtesy of Elizabeth Tammi What do you most enjoy about sharing the Hubble story?
I think my favorite part is reading the comments that we get from the public, just because everyone has been so supportive of the telescope. Social media can put on display the best and worst aspects of humanity. It’s very nice to see this supportive corner of the Internet.
So far, what I’ve really enjoyed was our “Deep Field Week” social media campaign, which was around the 25th anniversary of the Hubble Deep Field image . To the unaided eye, this was a seemingly empty patch of sky. Hubble revealed it has countless galaxies. It was a really staggering finding and definitely was a huge cultural shift in how we think about our universe.
Previously, you were a NASA intern from the Summer of 2019 to May 2020. How has that experience shaped your current role?
It was absolutely vital. I don’t think I would be here in this position without that internship experience. It was the summer before my senior year of college. I got to go up to Goddard for summer 2019 and I was working primarily as an audio production intern, though the internship afforded me the opportunity to contribute to the newsroom’s work overall.
I worked with Katie Atkinson, who I also went to college with, and we got to work on the 50th anniversary of the Apollo 11 mission. One of my primary tasks that summer was working on an oral history campaign tied to Apollo 11’s 50th anniversary . We encouraged people from all over to send in audio accounts of what they remember experiencing when Apollo 11 landed on the Moon in 1969. Or, if they didn’t remember seeing it as it happened, how did the landing affect them and their view of the world, or their career aspirations, or if they have family stories tied to Apollo.
If I could describe my NASA experience with a book title, it would be the term “Galaxy Brain.” It’s when you have a normal thought but then you think harder, and it gets bigger. From the idea of constantly feeling mind-blown by the work that’s going on around me to being part of it makes me feel, “Oh my gosh!” This “Galaxy Brain” imagery symbolizes the enormous magnitude of everything that is interesting and mysterious. It’s just something that’s constantly engaging.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
By Elissa Fielding
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
Sols 4443-4444: Four Fours for February
NASA’s Mars rover Curiosity acquired this image from about 25 centimeters (about 10 inches) away from the polygonally-fractured bedrock target named “Coldwater Canyon.” Curiosity captured the image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on Feb. 2, 2025 — sol 4441, or Martian day 4,441 of the Mars Science Laboratory Mission — at 08:40:11 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Feb. 3, 2025
Another successful weekend plan left us about 23 meters (about 75 feet) farther down our Mount Sharp Ascent Route (MSAR), with all our science data downlinked to Earth and the planet clocks aligned once more. We only have until 18:26 Pacific time to get this Monday’s plan uplinked (due to the Soliday over the weekend), and two full days of science to plan!
Our first sol science block starts at 12:06 local Gale Crater time, including a ChemCam long-distance RMI mosaic and a five-shot laser on bedrock. After ChemCam is done, Mastcam is planning 42 images, including ChemCam’s LIBS spots, some meteorite fragments, sand troughs between bedrock blocks, and interesting vein structures in our surrounding terrain. Navcam is planning to finish out that science block with a large dust devil survey. After our remote science wraps up, we’ve committed the hours between about 15:00 and 22:45 to our full contact science suite. Luckily, SRAP passed yet again and we took the opportunity to plan two targets — “San Rafael Hills” as our DRT target and “Allison Mine” as a potential meteorite target.
After a nice, long sleep our rover will wake up at 09:53 local Gale time and start another round of remote science to start the sol. This time ChemCam will shoot their laser at the potential meteorite and contact target Allison Mine, with Mastcam following up to document the spots. After one last 20-minute sweep of Texoli butte through Mastcam, it’s time to pack up and head back down the MSAR. Hopefully our drive goes well again and we’ll find ourselves about 36 meters (about 118 feet) away on Wednesday!
Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
Share
Details
Last Updated Feb 06, 2025 Related Terms
Blogs Explore More
3 min read Persevering Through Science
Article
2 days ago
3 min read Sols 4441-4442: Winter is Coming
Article
2 days ago
2 min read Sols 4439-4440: A Lunar New Year on Mars
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By Space Force
A joint-task force of Guardsmen and Reservists conquer air, space, and sea to provide Human Space Flight Support training for astronaut retrieval through search and rescue.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.