Members Can Post Anonymously On This Site
History of the Extraterrestrial Agenda and the Coming Global Revolution
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Permafrost Tunnel north of Fairbanks, Alaska, was dug in the 1960s and is run by the U.S. Army’s Cold Regions Research and Engineering Laboratory. It is the site of much research into permafrost — ground that stays frozen throughout the year, for multiple years.NASA/Kate Ramsayer Earth’s far northern reaches have locked carbon underground for millennia. New research paints a picture of a landscape in change.
A new study, co-authored by NASA scientists, details where and how greenhouse gases are escaping from the Earth’s vast northern permafrost region as the Arctic warms. The frozen soils encircling the Arctic from Alaska to Canada to Siberia store twice as much carbon as currently resides in the atmosphere — hundreds of billions of tons — and most of it has been buried for centuries.
An international team, led by researchers at Stockholm University, found that from 2000 to 2020, carbon dioxide uptake by the land was largely offset by emissions from it. Overall, they concluded that the region has been a net contributor to global warming in recent decades in large part because of another greenhouse gas, methane, that is shorter-lived but traps significantly more heat per molecule than carbon dioxide.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Greenhouse gases shroud the globe in this animation showing data from 2021. Carbon dioxide is shown in orange; methane is shown in purple. Methane traps heat 28 times more effectively than carbon dioxide over a 100-year timescale. Wetlands are a significant source of such emissions.NASA’s Scientific Visualization Studio The findings reveal a landscape in flux, said Abhishek Chatterjee, a co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “We know that the permafrost region has captured and stored carbon for tens of thousands of years,” he said. “But what we are finding now is that climate-driven changes are tipping the balance toward permafrost being a net source of greenhouse gas emissions.”
Carbon Stockpile
Permafrost is ground that has been permanently frozen for anywhere from two years to hundreds of thousands of years. A core of it reveals thick layers of icy soils enriched with dead plant and animal matter that can be dated using radiocarbon and other techniques. When permafrost thaws and decomposes, microbes feed on this organic carbon, releasing some of it as greenhouse gases.
Unlocking a fraction of the carbon stored in permafrost could further fuel climate change. Temperatures in the Arctic are already warming two to four times faster than the global average, and scientists are learning how thawing permafrost is shifting the region from being a net sink for greenhouse gases to becoming a net source of warming.
They’ve tracked emissions using ground-based instruments, aircraft, and satellites. One such campaign, NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), is focused on Alaska and western Canada. Yet locating and measuring emissions across the far northern fringes of Earth remains challenging. One obstacle is the vast scale and diversity of the environment, composed of evergreen forests, sprawling tundra, and waterways.
This map, based on data provided by the National Snow and Ice Data Center, shows the extent of Arctic permafrost. The amount of permafrost underlying the surface ranges from continuous — in the coldest areas — to more isolated and sporadic patches.NASA Earth Observatory Cracks in the Sink
The new study was undertaken as part of the Global Carbon Project’s RECCAP-2 effort, which brings together different science teams, tools, and datasets to assess regional carbon balances every few years. The authors followed the trail of three greenhouse gases — carbon dioxide, methane, and nitrous oxide — across 7 million square miles (18 million square kilometers) of permafrost terrain from 2000 to 2020.
Researchers found the region, especially the forests, took up a fraction more carbon dioxide than it released. This uptake was largely offset by carbon dioxide emitted from lakes and rivers, as well as from fires that burned both forest and tundra.
They also found that the region’s lakes and wetlands were strong sources of methane during those two decades. Their waterlogged soils are low in oxygen while containing large volumes of dead vegetation and animal matter — ripe conditions for hungry microbes. Compared to carbon dioxide, methane can drive significant climate warming in short timescales before breaking down relatively quickly. Methane’s lifespan in the atmosphere is about 10 years, whereas carbon dioxide can last hundreds of years.
The findings suggest the net change in greenhouse gases helped warm the planet over the 20-year period. But over a 100-year period, emissions and absorptions would mostly cancel each other out. In other words, the region teeters from carbon source to weak sink. The authors noted that events such as extreme wildfires and heat waves are major sources of uncertainty when projecting into the future.
Bottom Up, Top Down
The scientists used two main strategies to tally greenhouse gas emissions from the region. “Bottom-up” methods estimate emissions from ground- and air-based measurements and ecosystem models. Top-down methods use atmospheric measurements taken directly from satellite sensors, including those on NASA’s Orbiting Carbon Observatory-2 (OCO-2) and JAXA’s (Japan Aerospace Exploration Agency)Greenhouse Gases Observing Satellite.
Regarding near-term, 20-year, global warming potential, both scientific approaches aligned on the big picture but differed in magnitude: The bottom-up calculations indicated significantly more warming.
“This study is one of the first where we are able to integrate different methods and datasets to put together this very comprehensive greenhouse gas budget into one report,” Chatterjee said. “It reveals a very complex picture.”
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
Written by Sally Younger
2024-147
Share
Details
Last Updated Oct 29, 2024 Related Terms
Earth Carbon Cycle Climate Change Greenhouse Gases Jet Propulsion Laboratory Explore More
6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
Article 22 hours ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 1 day ago 3 min read High-Altitude ER-2 Flights Get Down-to-Earth Data
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin” on lower Mount Sharp. When NASA conducts research beyond our world, scientists on Earth prepare as much as possible before sending instruments on extraterrestrial journeys. One way to prepare for these exploration missions is by using machine learning techniques to develop algorithms with data from commercial instruments or from flight instruments on planetary missions.
For example, NASA uses mass spectrometer instruments on Mars missions to analyze surface samples and identify organic molecules. Developing machine learning algorithms before missions can help make the process of analyzing planetary data faster and more efficient during time-limited space operations.
In 2022, Victoria Da Poian, a data scientist supporting machine learning research at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, collaborated with NASA’s Center of Excellence for Collaborative Innovation to run two machine learning-based open science challenges, which sought ideas and solutions from the public. Solvers worldwide were invited to analyze chemical data sampled from commercial instruments located at NASA centers and data from the Sample Analysis at Mars (SAM) testbed, which is a replica of the instrument suite onboard the Curiosity rover. The challenges encouraged participants to be creative in their approaches and to provide detailed descriptions of their method and code.
Da Poian said her team decided to use public competitions for this project to gain new perspectives: “We were really interested in hearing from people who aren’t in our field and weren’t biased by the data’s meaning or our scientific rules.”
As a result, more than 1150 unique participants from all over the world participated in the competitions, and more than 600 solutions contributing models to analyze rock and soil samples relevant to planetary science were submitted. The challenges served as proof-of-concept projects to analyze the feasibility of combining data from multiple sources in a single machine learning application.
In addition to benefitting from the variety of perspectives offered by challenge participants, Da Poian says the challenges were both time- and cost-efficient methods for discovering solutions. At the same time, the challenges invited the global community to participate in NASA research in support of future space exploration missions, and winners received $60,000 in total prizes across the two opportunities.
Da Poian used lessons learned to develop a new challenge with Frontier Development Lab , an international research collaboration that brings together researchers and domain experts to tackle complex problems using machine learning technologies.
The competition, titled “Stay Curious: Leveraging Machine Learning to Analyze & Interpret the Measurements of Mars Planetary Instruments,” ran from June to August 2024. Results included cleaning SAM data collected on Mars, processing data for a consistent, machine learning-ready dataset combining commercial and flight instrument data, investigating data augmentation techniques to increase the limited data volume available for the challenge, and exploring machine learning techniques to help predict the chemical composition of Martian terrain.
“The machine learning challenges opened the door to how we can use laboratory data to train algorithms and then use that to train flight data,” said Da Poian. “Being able to use laboratory data that we’ve collected for many years is a huge opportunity for us, and the results so far are extremely encouraging.”
Find more opportunities: https://www.nasa.gov/get-involved/
View the full article
-
By NASA
4 Min Read Unique NASA Partnerships Spark STEM Learning on Global Scale
NASA astronaut Thomas Marshburn reading “Goodnight Moon” aboard station for Crayola’s “Read Along, Draw Along” Credits: NASA NASA offers a world of experiences and opportunities to engage young explorers around the globe in the excitement of science, technology, engineering, and mathematics (STEM). NASA’s Office of STEM Engagement collaborates with experts throughout the agency, the U.S. government, and a variety of global partners to spark inspiration in Artemis Generation students everywhere.
Partnerships with the agency reach new audiences. Here are some of the ways NASA and its partners are making exciting STEM learning resources and opportunities available globally.
NASA and Minecraft collaborated to bring NASA missions to life. NASA and Crayola partnered on a series of virtual engagements to encourage students and families to participate in science, technology, engineering, art, and mathematics (STEAM) content – for example, the annual Crayola Creativity Week. NASA partnered with LEGO Education on educational resources to introduce STEAM concepts and careers with students, teachers, and families. NASA joined forces with Discovery Education to provide curriculum support resources, videos, and events through their online platform. NASA recently signed an agreement with Arizona State University’s Milo Space Science Institute to create new opportunities for students to engage in STEM workforce development through 12-week academies using NASA data sets, information from NASA subject matter experts as well as information on the agency’s missions and careers. NASA partnered with Code.org on the development of computer science and coding resources for teachers and students. NASA collaborated with LabXchange to develop free online resources for teachers and students on topics such as solar eclipses, Mars, astrobiology, and Artemis missions, with more than 700 resources available to date. Representative LEGO minifigures in front of European Service Module that will power the Orion spacecraft on Artemis II. Four LEGO minifigures will fly on Artemis I as part of the official flight kit, which carries mementos for educational outreach and posterity.
Credit: NASA/Radislav Sinyak There’s More to Explore With NASA
International educators and students can find even more ways to engage with NASA’s missions and content through these resources, available online to all.
For the youngest explorers, NASA Kids Club offers STEM-based games for students ages 3-9. The agency’s Artemis Camp Experience features hands-on activities designed to introduce K-12 students to the systems that will enable NASA astronauts to return to the Moon with Artemis. NASA’s “First Woman” graphic novel series tells the fictional story of Callie Rodriguez, the first woman to explore the Moon. Created for students in grades 5-12, “First Woman” includes graphic novels in English and Spanish along with accompanying videos, activities, and more. Through the agency’s internship opportunities, students gain authentic experience while being part of the agency’s work. Student challenges available internationally include the Human Exploration Rover Challenge, in which student teams create and test human-powered rovers, and the Space Apps Challenge, a hackathon that aims to solve real-world challenges on Earth and in space. NASA’s ASTRO CAMP Community Partners Program shares NASA STEM content and experiences through youth organizations and informal learning institutions such as museums and libraries, including nearly 30 international partner sites. Citizen scientists anywhere can contribute their local observations through the Global Learning and Observations to Benefit the Environment (GLOBE) Observer app, part of the GLOBE program sponsored by NASA, the National Oceanic and Atmospheric Administration, National Science Foundation, and Youth Learning as Citizen Environmental Scientists. Look up! Use the Spot the Station mobile app and website to know when the International Space Station will pass overhead. NASA is much more than astronauts and rocket scientists. The Surprisingly STEM video series highlights unexpected careers with linked hands-on activities. STEM resources for educators and students can be found anytime on NASA’s Learning Resources website. The agency offers video on demand through NASA+ with unique STEM programming, live coverage of NASA missions, and more. Students put their human-powered rover to the test in NASA’s Human Exploration Rover Challenge.
Credit: NASA Get NASA STEM Updates via Email
NASA STEM’s e-newsletters deliver the latest updates to email inboxes around the world. The NASA EXPRESS weekly e-newsletter offers the latest NASA STEM content and opportunities, while the monthly Earthrise e-newsletter offers themed resources to elevate Earth and climate science in the classroom.
Learn more about how NASA’s Office of STEM Engagement is inspiring Artemis Generation explorers at: https://www.nasa.gov/stem
Share
Details
Last Updated Oct 02, 2024 Related Terms
Learning Resources Partner with NASA STEM STEM Engagement at NASA Keep Exploring Discover More Topics From NASA
Partnering with NASA STEM Engagement
NASA Internship Programs
Join Artemis
Get Involved
View the full article
-
By Space Force
During CSO Gen. Chance Saltzman’s keynote address at the Air, Space and Cyber Conference, he explained how the service will transform to thrive in a new environment optimized for Great Power Competition.
View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Reaching New Heights to Unravel Deep Martian History!
This is an image of the rim that the Perseverance rover took on sol 383 (March 19th, 2022) when it was traversing the crater floor. Dox Castle is located at the top of the image in the far ground. NASA/JPL-Caltech/ASU The Perseverance rover is reaching new heights as it ascends the rim of Jezero crater (over 300 meters in elevation higher than the original landing site)! The rover is now enroute to its first campaign science stop Dox Castle (image in the far ground) a region of interest for its potential to host ancient Mars’ bedrock in the exposed rocks on the rim.
Impact craters like Jezero may be the key to piecing together the early geologic history of Mars, as they provide a window into the history of the ancient crust by excavating and depositing deep crustal materials above the surface. Crater rims act as keepers of ancient Martian history, uplifting and exposing the stratigraphy of these impacted materials. Additionally, extreme heat from the impact can encourage the circulation of fluids through fractures similar to hydrothermal vents, which have implications for early habitability and may be preserved in the exposed rim bedrock. With the Perseverance rover we have the potential to explore some of the oldest exposed rocks on the planet.
Exploring such diverse terrains takes a lot of initial planning! The team has been preparing for the Crater Rim Campaign these last few months by working together to map out the types of materials Perseverance may encounter during its traverse up and through the rim. Using orbital images from the High-Resolution Imaging Science Experiment (HiRISE) instrument, the science team divided the rim area into 36 map quadrants, carefully mapping different rock units based on the morphologies, tones, and textures they observed in the orbital images. Mapping specialists then connected units across the quads to turn 36 miniature maps into one big geologic map of the crater rim. This resource is being used by the team to plan strategic routes to scientific areas of interest on the rim.
On Earth, geologic maps are made using a combination of orbital images and mapping in the field. Planetary scientists don’t typically get to check their map in the field, but we have the unique opportunity to validate our map using our very own robot geologist! Dox Castle will be our first chance to do rim science – and we’re excited to search for evidence of the transition between the margin and rim materials to start piecing together the stratigraphic history of the rocks that make up the rim of Jezero crater.
Written by Margaret Deahn, Ph.D. student at Purdue University
Share
Details
Last Updated Sep 16, 2024 Related Terms
Blogs Explore More
5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!
Article
3 days ago
3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint
Article
3 days ago
2 min read Margin’ up the Crater Rim!
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.