Jump to content

Sols 4511-4512: Low energy after a big weekend?


Recommended Posts

  • Publishers
Posted

2 min read

Sols 4511-4512: Low energy after a big weekend?

A grayscale photograph of the Martian surface from the Curiosity rover
This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4510 (2025-04-14 03:43:40 UTC).
NASA/JPL-Caltech

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Earth planning date: Monday, April 14, 2025

We all know the feeling: it’s Monday morning after a big weekend and you’re coming into the week wishing you’d had a little more time to rest and recharge.  Well, Curiosity probably feels the same way today. Curiosity accomplished a lot over the weekend, including full contact science, a MAHLI stereo imaging test, testing the collection of ChemCam passive spectral data at the same time as data transmission with one of the orbiters, and some APXS and MAHLI calibration target activities, plus a long 57 m drive. It was great to see all of those activities in the plan and to see some great drive progress. But that means we’re a bit tight on power for today’s plan!

I was on shift as Long Term Planner today, and the team had to think carefully about science priorities to fit within our power limit for today’s plan, and how that will prepare us for the rest of the week.  The team still managed to squeeze a lot of activities into today’s 2-sol plan. First, Curiosity will acquire Mastcam mosaics to investigate local stratigraphic relationships and diagenetic features. Then we’ll acquire some imaging to document the sandy troughs between bedrock blocks to monitor active surface processes. We’ll also take a Navcam mosaic to assess atmospheric dust. The science block includes a ChemCam LIBS observation on the bedrock target “Santa Margarita” and a long distance RMI mosaic of “Ghost Mountain” to look for possible boxwork structures. Then Curiosity will use the DRT, APXS and MAHLI to investigate the finely-laminated bedrock in our workspace at a target named “The Grotto.”  We’ll also collect APXS and MAHLI data on a large nodule in the workspace named “Torrey Pines” (meanwhile the Torrey Pines here on Earth was shaking in today’s southern California earthquakes! All is well but it gave some of our team members an extra jolt of adrenaline right before the SOWG meeting).  The second sol is focused on continuing our drive to the south and taking post-drive imaging to prepare for Wednesday’s plan.

Phew! Good job Curiosity, you made it through Monday.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ECF 2024 Quadchart McGuirk.pdf
      Christopher McGuirk
      Colorado School of Mines
      This project will investigate and develop improved storage methods for the fuels needed to generate electrical power in places where sunlight is not available. The effort will focus on particularly tailored materials called Metal Oxide Frameworks, or MOFs, that can be used to store methane and oxygen. The methane and oxygen can be reacted in a solid oxide fuel cell to generate electricity, and storing them in a MOF could potentially result in significant mass and cost savings over traditional storage tanks which also require active pressure and thermal regulation. The team will use a number of computational and experimental tools to develop a MOF structure suitable for this application.
      Back to ECF 2024 Full List
      Share
      Details
      Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
      Early Career Faculty (ECF) Space Technology Research Grants View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ECF 2024 Quadchart Oguri.pdf
      Kenshiro Oguri
      Purdue University
      This project will investigate one of the key fundamental challenges associated with directed-energy light-sailing technology, similar to solar sails but powered by a laser beam pointed at the sail instead of by the sun. The effort will first mathematically model, then design, build, and test a prototype diffractive light sail. The three-dimensional, origami-inspired light sail could potentially unlock higher thrust, passive beam riding stability, and higher maneuverability via its ability to transform its shape.
      Back to ECF 2024 Full List
      Share
      Details
      Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
      Early Career Faculty (ECF) Space Technology Research Grants View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ECF 2024 Quadchart Ilic.pdf
      Ognjen Ilic
      University of Minnesota
      This effort will aim to demonstrate the feasibility of directed-energy propulsion through a combination of computational simulations and prototype testing. The project will model the interactions between lightsail material and a laser beam that can be pointed at the sail to propel the spacecraft. The results of the modeling will be used to fabricate an optimized sail for testing with a 30W laser. A successful demonstration would pave the way for ultrafast spaceflight within and beyond the solar system.
      Back to ECF 2024 Full List
      Share
      Details
      Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
      Early Career Faculty (ECF) Space Technology Research Grants View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4509-4510: A weekend of long drives
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4507 (2025-04-11 03:54:35 UTC). Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, April 11, 2025
      Curiosity is continuing to book it to the potential boxwork structures.  The rover drove over 50 meters on Wednesday, and we plan to drive more than 50 meters again in today’s plan thanks to an unusually good viewshed that allows us to see far ahead.  We’ve been able to see glimpses of the boxwork structures in the distance for a few weeks now, and I am really excited about being able to plan long drives that get us closer and closer. What will we find when we reach them?
      Power was on everyone’s mind as we put the plan together today. The science team had lots of amazing ideas about observations to collect from our current location, but we had to carefully plan and prioritize them to make sure we didn’t use too much power and leave the rover battery lower than we’d like for Monday’s plan.  Winter on Mars certainly keeps us on our toes!  We ended up putting together what I think is a pretty good set of activities for the weekend.  MAHLI, APXS, and ChemCam will all work together to observe a flat rock in front of us named “Iron Mountain.” MAHLI will also do an experiment with this rock, testing different combinations of camera positions to see which produces the best data to help us generate 3D models of the rock’s surface.  I know rocks don’t have feelings, but if they did, I hope Iron Mountain can use this time to feel a bit like a movie star on the red carpet, getting photographed from all angles. Mastcam will also be photographing the surroundings, working with ChemCam’s RMI imager to take images the ridge containing boxwork structures named “Ghost Mountain,” and taking some solo shots of targets in the foreground named “Redondo Flat,” “Silverwood Sanctuary,” and the oft photographed Gould Mesa.  Navcam, REMS, and DAN round out the science plan with some environmental observations. We’ll be getting one more science and engineering hybrid observation when we collect ChemCam passive spectral data of the instrument’s calibration target in parallel with one of our communication passes.  This observation is part of a series of tests we’re doing to run rover activities in parallel with these passes, and if successful, will allow us to be more even more power efficient in the future.
      We’re also celebrating a soliday this weekend, which means we only have a two-sol plan instead of our usual three as the Mars and Earth time zones re-align for the next few weeks.  I’m looking forward to seeing where Curiosity drives next week.
      Explore More
      2 min read Sols 4511-4512: Low energy after a big weekend?


      Article


      16 mins ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      4 days ago
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      The Mars Report


      The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4507-4508: “Just Keep Driving”
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC. NASA/JPL-Caltech/MSSS Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Wednesday, April 9, 2025
      Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).
      Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here. 
      ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.
      Explore More
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      3 days ago
      3 min read Sols 4502-4504: Sneaking Past Devil’s Gate


      Article


      4 days ago
      3 min read Sols 4500-4501: Bedrock With a Side of Sand


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Curiosity Rover (MSL)


      View the full article
  • Check out these Videos

×
×
  • Create New...