Jump to content

NASA Aims to Fly First Quantum Sensor for Gravity Measurements


Recommended Posts

  • Publishers
Posted

Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. Supported by NASA’s Earth Science Technology Office (ESTO), this mission will mark a first for quantum sensing and will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water.

 Map of Earth's gravity with North and South America visible. The colors on the map vary and are yellow, green, blue, and red. Red indicates areas of greater gravitational pull and blue, less. South Central American through the western coast of South America are red, the Atlantic ocean is mostly blue and the Pacific ocean varies from yellow to teal.
A map of Earth’s gravity. Red indicates areas of the world that exert greater gravitational pull, while blue indicates areas that exert less. A science-grade quantum gravity gradiometer could one day make maps like this with unprecedented accuracy.
Image Credit: NASA

Earth’s gravitational field is dynamic, changing each day as geologic processes redistribute mass across our planet’s surface. The greater the mass, the greater the gravity.

You wouldn’t notice these subtle changes in gravity as you go about your day, but with sensitive tools called gravity gradiometers, scientists can map the nuances of Earth’s gravitational field and correlate them to subterranean features like aquifers and mineral deposits. These gravity maps are essential for navigation, resource management, and national security.

“We could determine the mass of the Himalayas using atoms,” said Jason Hyon, chief technologist for Earth Science at JPL and director of JPL’s Quantum Space Innovation Center. Hyon and colleagues laid out the concepts behind their Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument in a recent paper in EPJ Quantum Technology.

Gravity gradiometers track how fast an object in one location falls compared to an object falling just a short distance away. The difference in acceleration between these two free-falling objects, also known as test masses, corresponds to differences in gravitational strength. Test masses fall faster where gravity is stronger.

QGGPf will use two clouds of ultra-cold rubidium atoms as test masses. Cooled to a temperature near absolute zero, the particles in these clouds behave like waves. The quantum gravity gradiometer will measure the difference in acceleration between these matter waves to locate gravitational anomalies.

Using clouds of ultra-cold atoms as test masses is ideal for ensuring that space-based gravity measurements remain accurate over long periods of time, explained Sheng-wey Chiow, an experimental physicist at JPL. “With atoms, I can guarantee that every measurement will be the same. We are less sensitive to environmental effects.”

Using atoms as test masses also makes it possible to measure gravity with a compact instrument aboard a single spacecraft. QGGPf will be around 0.3 cubic yards (0.25 cubic meters) in volume and weigh only about 275 pounds (125 kilograms), smaller and lighter than traditional space-based gravity instruments.

Quantum sensors also have the potential for increased sensitivity. By some estimates, a science-grade quantum gravity gradiometer instrument could be as much as ten times more sensitive at measuring gravity than classical sensors.

The main purpose of this technology validation mission, scheduled to launch near the end of the decade, will be to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale.

“No one has tried to fly one of these instruments yet,” said Ben Stray, a postdoctoral researcher at JPL. “We need to fly it so that we can figure out how well it will operate, and that will allow us to not only advance the quantum gravity gradiometer, but also quantum technology in general.”

This technology development project involves significant collaborations between NASA and small businesses. The team at JPL is working with AOSense and Infleqtion to advance the sensor head technology, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland is working with Vector Atomic to advance the laser optical system.

Ultimately, the innovations achieved during this pathfinder mission could enhance our ability to study Earth, and our ability to understand distant planets and the role gravity plays in shaping the cosmos. “The QGGPf instrument will lead to planetary science applications and fundamental physics applications,” said Hyon.

To learn more about ESTO visit: https://esto.nasa.gov

Share

Details

Last Updated
Apr 15, 2025
Editor
NASA Science Editorial Team
Contact
Gage Taylor

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft is launched on NASA’s SpaceX Crew-10 mission to the International Space Station.NASA/Aubrey Gemignani Digital content creators are invited to register to attend the launch of NASA’s SpaceX Crew-11 mission to carry astronauts to the International Space Station for a science expedition as part of NASA’s Commercial Crew Program. This will be the 15th time a SpaceX Dragon spacecraft launched by a Falcon 9 rocket takes crews to the orbital laboratory. 
      Launch of the Crew-11 mission is targeted for no earlier than July 2025 on a SpaceX Falcon 9 rocket from Florida. The launch will carry NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, and mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui and Roscosmos cosmonaut Oleg Platonov. 
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew11 mission launch. 
      A maximum of 50 social media users will be selected to attend this two-day event and will be given exclusive access to NASA’s Kennedy Space Center in Florida. 
      NASA Social participants will have the opportunity to: 
      View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft  Tour NASA facilities at the agency’s Kennedy Space Center in Florida  Meet and interact with Crew-11 subject-matter experts  Meet fellow space enthusiasts who are active on social media  NASA Social registration for the Crew-11 launch opens on Tuesday, April 15, and the deadline to apply is at 10 a.m. EDT on Monday, April 28. All social applications will be considered on a case-by-case basis. 
      APPLY NOW 
      Do I need to have a social media account to register? 
       Yes. This event is designed for people who: 
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience.  Regularly produce new content that features multimedia elements.  Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.  Must have an established history of posting content on social media platforms.  Have previous postings that are highly visible, respected and widely recognized.  Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew11. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. 
      How do I register? 
      Registration for this event opens on Tuesday, April 15, and the deadline to apply is at 10 a.m. EDT on Monday, April 28. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis. 
      Can I register if I am not a U.S. citizen? 
      Yes, this event is open for all to apply, ages 18 years and older. 
      When will I know if I am selected? 
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by May 30. 
      What are NASA Social credentials? 
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. 
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. 
      What are the registration requirements? 
      Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. You must be able to attend all days of NASA Social activities in order to view the launch
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 
      NASA Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. 
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. 
      All registrants must be at least 18 years old. 
      What if the launch date changes? 
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 
      If the launch is postponed, attendees may be invited to attend a later launch date but that is not guaranteed. 
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 
      What if I cannot come to the Kennedy Space Center? 
      If you cannot come to the Kennedy Space Center and attend all days in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  
      You can also become a virtual guest for NASA launches and milestone events. This free program gives access to curated resources, schedule changes, and mission specific information delivered straight to your inbox. Join us today! 
      You can watch the launch on NASA+. NASA will provide regular launch and mission updates on X at @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog. 
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! 
      Apply Now
      View the full article
    • By NASA
      NASA’s SpaceX 32nd commercial resupply services mission, scheduled to lift off from the agency’s Kennedy Space Center in April, is heading to the International Space Station with experiments that include research on whether plant DNA responses in space correlate to human aging and disease, and measuring the precise effects of gravity on time.  
      Discover more details about the two experiments’ potential impacts on space exploration and how they can enhance life on Earth: 
      “Second Guessing” Time in Space 
      As outlined in Einstein’s general theory of relativity, how we experience the passage of time is influenced by gravity. However, there is strong evidence to believe this theory may not be complete and that there are unknown forces at play. These new physics effects may manifest themselves in small deviations from Einstein’s prediction.  
      The ACES (Atomic Clock Ensemble in Space) investigation is an ESA (European Space Agency) mission that aims to help answer fundamental physics questions. By comparing a highly precise atomic clock in space with numerous ground atomic clocks around the world, ACES could take global time synchronization and clock comparison experiments to new heights.  
      Sponsored by NASA, United States scientists are participating in the mission in various ways, including contributing ground station reference clocks. Scheduled to collect data for 30 months, this vast network of precise clocks is expected to provide fresh insights into the exact relationship between gravity and time, set new limits for unknown forces, and improve global time synchronization.  
      In addition to investigating the laws of physics, ACES will enable new terrestrial applications such as relativistic geodesy, which involves measuring Earth’s shape and gravitational field with extreme precision. These advancements are critical to space navigation, satellite operations, and GPS systems. For example, without understanding the time fluctuations between Earth and medium Earth orbit, GPS would be progressively less accurate. 
      A robotic arm will attach ACES to the Columbus Laboratory module aboard the International Space Station. Image courtesy of ESA  Probing Plants for Properties to Protect DNA 
      The APEX-12 (Advanced Plant EXperiment-12) investigation will test the hypothesis that induction of telomerase activity in space protects plant DNA molecules from damage elicited by cellular stress evoked by the combined spaceflight stressors experienced by seedlings grown aboard the space station. It is expected that results will lead to a better understanding of differences between human and plant telomere behavior in space.   
      Data on telomerase activity in plants could be leveraged not only to develop therapies for age-related diseases in space and on Earth, but also for ensuring food crops are more resilient to spaceflight stress. 
      Telomeres and telomerase influence cell division and cell death, two processes crucial to understanding aging in humans. Telomeres are the protective end caps of chromosomes. Each time a cell divides, the telomeres shorten slightly, essentially acting as a biological clock for cell aging. Conversely, telomerase is an enzyme that adds nucleotide sequences to the ends of telomeres, lengthening them and counteracting their shortening.  
      In humans, telomere shortening is linked to various age-related conditions, such as cardiovascular diseases and certain cancers. In astronauts, studies have shown that spaceflight leads to changes in telomere length, with a notable lengthening observed. This phenomenon carries potential implications for astronaut health outcomes. By contrast, plant telomere length did not change during spaceflight, despite a dramatic increase in telomerase activity.
      A microscopic image of plant telomeres taken under a fluorescent microscope. The chromosomes are highlighted in blue. The telomeres are highlighted in yellow. Image courtesy of Texas A&M University  How this benefits space exploration: Experiments aboard NASA’s SpaceX CRS-32 mission is twofold. One, they have the potential to significantly enhance precision timekeeping, which is necessary to improve space navigation and communication. Two, they can provide insights into how plants adapt to protect DNA molecules from cellular stress caused by environmental factors experienced in spaceflight, in an effort to sustain plant life in space. 
      How this benefits humanity: The experiments conducted on NASA’s SpaceX CRS-32 mission offer a range of potential benefits to humanity. First, improving precision timekeeping for more accurate GPS technology. Second, capturing data about how telomerase activity correlates to cellular stress in plants, which could lead to assays which better correlate telomerase activity and cellular stress and provide fundamental research to contribute to potential therapies for humans.   
      Learn more about the investigations:
      ACES (Atomic Clock Ensemble in Space)

      Atomic Clock Ensemble in Space (ACES) is a European Space Agency (ESA) mission that aims to help answer fundamental physics questions.


      APEX-12 (Advanced Plant EXperiment-12)

      Advanced Plant EXperiment-12 (APEX-12) will test the hypothesis that induction of telomerase, a protein complex, activity in space protects plant DNA molecules from damage elicited by cellular stress evoked by the combined spaceflight stressors experienced by seedlings grown aboard the space station.


      About BPS 
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth. 
      View the full article
    • By NASA
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that form water on the Moon. When a stream of charged particles known as the solar wind smashes into the lunar surface, the idea goes, it triggers a chemical reaction that could make water molecules.   
      Now, in the most realistic lab simulation of this process yet, NASA-led researchers have confirmed this prediction.  
      The finding, researchers wrote in a March 17 paper in JGR Planets, has implications for NASA’s Artemis astronaut operations at the Moon’s South Pole. A critical resource for exploration, much of the water on the Moon is thought to be frozen in permanently shadowed regions at the poles.  
      “The exciting thing here is that with only lunar soil and a basic ingredient from the Sun, which is always spitting out hydrogen, there’s a possibility of creating water,” Li Hsia Yeo, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s incredible to think about,” said Yeo, who led the study. 
      Solar wind flows constantly from the Sun. It’s made largely of protons, which are nuclei of hydrogen atoms that have lost their electrons. Traveling at more than one million miles per hour, the solar wind bathes the entire solar system. We see evidence of it on Earth when it lights up our sky in auroral light shows. 
      Computer-processed data of the solar wind from NASA’s STEREO spacecraft. Download here: https://svs.gsfc.nasa.gov/20278/ NASA/SwRI/Craig DeForest Most of the solar particles don’t reach the surface of Earth because our planet has a magnetic shield and an atmosphere to deflect them. But the Moon has no such protection. As computer models and lab experiments have shown, when protons smash into the Moon’s surface, which is made of a dusty and rocky material called regolith, they collide with electrons and recombine to form hydrogen atoms.
      Then, the hydrogen atoms can migrate through the lunar surface and bond with the abundant oxygen atoms already present in minerals like silica to form hydroxyl (OH) molecules, a component of water, and water (H2O) molecules themselves.  
      Scientists have found evidence of both hydroxyl and water molecules in the Moon’s upper surface, just a few millimeters deep. These molecules leave behind a kind of chemical fingerprint — a noticeable dip in a wavy line on a graph that shows how light interacts with the regolith. With the current tools available, though, it is difficult to tell the difference between hydroxyl and water, so scientists use the term “water” to refer to either one or a mix of both molecules.
      Many researchers think the solar wind is the main reason the molecules are there, though other sources like micrometeorite impacts could also help by creating heat and triggering chemical reactions. 
      In 2016, scientists discovered that water is released from the Moon during meteor showers. When a speck of comet debris strikes the moon, it vaporizes on impact, creating a shock wave in the lunar soil. With a sufficiently large impactor, this shock wave can breach the soil’s dry upper layer and release water molecules from a hydrated layer below. NASA’s LADEE spacecraft detected these water molecules as they entered the tenuous lunar atmosphere. NASA’s Goddard Space Flight Center Conceptual Image Lab Spacecraft measurements had already hinted that the solar wind is the primary driver of water, or its components, at the lunar surface. One key clue, confirmed by Yeo’s team’s experiment: the Moon’s water-related spectral signal changes over the course of the day.  
      In some regions, it’s stronger in the cooler morning and fades as the surface heats up, likely because water and hydrogen molecules move around or escape to space. As the surface cools again at night, the signal peaks again. This daily cycle points to an active source — most likely the solar wind—replenishing tiny amounts of water on the Moon each day.  
      To test whether this is true, Yeo and her colleague, Jason McLain, a research scientist at NASA Goddard, built a custom apparatus to examine Apollo lunar samples. In a first, the apparatus held all experiment components inside: a solar particle beam device, an airless chamber that simulated the Moon’s environment, and a molecule detector. Their invention allowed the researchers to avoid ever taking the sample out of the chamber — as other experiments did — and exposing it to contamination from the water in the air. 
      “It took a long time and many iterations to design the apparatus components and get them all to fit inside,” said McLain, “but it was worth it, because once we eliminated all possible sources of contamination, we learned that this decades-old idea about the solar wind turns out to be true.” 
      Using dust from two different samples picked up on the Moon by NASA’s Apollo 17 astronauts in 1972, Yeo and her colleagues first baked the samples to remove any possible water they could have picked up between air-tight storage in NASA’s space-sample curation facility at NASA’s Johnson Space Center in Houston and Goddard’s lab. Then, they used a tiny particle accelerator to bombard the dust with mock solar wind for several days — the equivalent of 80,000 years on the Moon, based on the high dose of the particles used. 
      They used a detector called a spectrometer to measure how much light the dust molecules reflected, which showed how the samples’ chemical makeup changed over time. 
      In the end, the team saw a drop in the light signal that bounced to their detector precisely at the point in the infrared region of the electromagnetic spectrum — near 3 microns — where water typically absorbs energy, leaving a telltale signature.  
      While they can’t conclusively say if their experiment made water molecules, the researchers reported in their study that the shape and width of the dip in the wavy line on their graph suggests that both hydroxyl and water were produced in the lunar samples.  
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin


      Article


      2 hours ago
      3 min read What Does NASA Science Do For Me?


      Article


      4 hours ago
      3 min read Exploring the Universe Through Sight, Touch, and Sound


      Article


      20 hours ago
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin
      This is an artist’s impression of a magnetar, a special type of neutron star with an incredibly strong magnetic field. Credits:
      ESA Researchers using NASA’s Hubble Space Telescope have discovered the magnetar called SGR 0501+4516 is traversing our galaxy from an unknown place of origin. Researchers say that this runaway magnetar is the likeliest candidate in our Milky Way galaxy for a magnetar that was not born in a supernova explosion as initially predicted. It is so strange it might even offer clues to the mechanism behind events known as fast radio bursts.
      “Magnetars are neutron stars — the dead remnants of stars — composed entirely of neutrons. What makes magnetars unique is their extreme magnetic fields,” said Ashley Chrimes, lead author of the discovery paper published in the April 15 journal Astronomy & Astrophysics. Chrimes is a European Space Agency Research Fellow at the European Space Research and Technology Center in the Netherlands.
      Magnetars have comic-book-hero superpowers. A magnetar has a magnetic field about a trillion times more powerful than Earth’s magnetosphere. If a magnetar flew by Earth at half the Moon’s distance, its intense field would wipe out every credit card on our planet. If a human got within 600 miles, the magnetar would become a proverbial sci-fi death-ray, ripping apart every atom inside the body.
      The magnetar’s strangeness was identified with the help of Hubble’s sensitive instruments as well as precise benchmarks from ESA’s (European Space Agency) Gaia spacecraft.
      Initially, the mysterious magnetar was discovered in 2008 when NASA’s Swift Observatory spotted brief, intense flashes of gamma rays from the outskirts of the Milky Way. The source, which turned out to be one of only about 30 known magnetars in the Milky Way, was dubbed SGR 0501+4516.
      This is an artist’s impression of a magnetar, which is a special type of neutron star with an incredibly strong magnetic field. Neutron stars are some of the most compact and extreme objects in the universe. These stars typically pack more than the mass of the Sun into a sphere of neutrons about 12 miles across. The neutron star is depicted as a white-blueish sphere. The magnetic field is shown as filaments streaming out from its polar regions. Illustration: ESA Because magnetars are neutron stars, the natural explanation for their formation is that they are born in supernovae, when a star explodes and can collapse down to an ultra-dense neutron star. This appeared to be the case for SGR 0501+4516, which is located close to a supernova remnant called HB9. The separation between the magnetar and the center of the supernova remnant on the sky is just 80 arcminutes, or slightly wider than your pinky finger when viewed at the end of your outstretched arm.
      But a decade-long study with Hubble cast doubt on the magnetar’s birthplace. After initial observations with ground-based telescopes shortly after SGR 0501+4516’s discovery, researchers used Hubble’s exquisite sensitivity and steady pointing to spot the magnetar’s faint infrared glow in 2010, 2012, and 2020. Each of these images was aligned to a reference frame defined by observations from the Gaia spacecraft, which has crafted an extraordinarily precise three-dimensional map of nearly two billion stars in the Milky Way. This method revealed the subtle motion of the magnetar as it traversed the sky.
      “All of this movement we measure is smaller than a single pixel of a Hubble image,” said co-investigator Joe Lyman of the University of Warwick, United Kingdom. “Being able to robustly perform such measurements really is a testament to the long-term stability of Hubble.”
      By tracking the magnetar’s position, the team was able to measure the object’s apparent motion across the sky. Both the speed and direction of SGR 0501+4516’s movement showed that the magnetar could not be associated with the nearby supernova remnant. Tracing the magnetar’s trajectory thousands of years into the past showed that there were no other supernova remnants or massive star clusters with which it could be associated.
      If SGR 0501+4516 was not born in a supernova, the magnetar must either be older than its estimated 20,000-year age, or it may have formed in another way. Magnetars may also be able to form through the merger of two lower-mass neutron stars or through a process called accretion-induced collapse. Accretion-induced collapse requires a binary star system containing a white dwarf: the core of a dead Sun-like star. If the white dwarf pulls in gas from its companion, it can grow too massive to support itself, leading to an explosion — or possibly the creation of a magnetar.
      “Normally, this scenario leads to the ignition of nuclear reactions, and the white dwarf exploding, leaving nothing behind. But it has been theorized that under certain conditions, the white dwarf can instead collapse into a neutron star. We think this might be how SGR 0501 was born,” added Andrew Levan of Radboud University in the Netherlands and the University of Warwick in the United Kingdom.
      Understanding Fast Radio Bursts
      SGR 0501+4516 is currently the best candidate for a magnetar in our galaxy that may have formed through a merger or accretion-induced collapse. Magnetars that form through accretion-induced collapse could provide an explanation for some of the mysterious fast radio bursts, which are brief but powerful flashes of radio waves. In particular, this scenario may explain the origin of fast radio bursts that emerge from stellar populations too ancient to have recently birthed stars massive enough to explode as supernovae.
      “Magnetar birth rates and formation scenarios are among the most pressing questions in high-energy astrophysics, with implications for many of the universe’s most powerful transient events, such as gamma-ray bursts, super-luminous supernovae, and fast radio bursts,” said Nanda Rea of the Institute of Space Sciences in Barcelona, Spain.
      The research team has further Hubble observations planned to study the origins of other magnetars in the Milky Way, helping to understand how these extreme magnetic objects form.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Related Images & Videos
      Illustration of Magnetar
      This is an artist’s impression of a magnetar, which is a special type of neutron star with an incredibly strong magnetic field.




      Share








      Details
      Last Updated Apr 15, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Science Ashley Chrimes
      ESA-ESTEC/Radboud University
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Magnetars Neutron Stars Stars The Universe
      Related Links and Documents
      ESA/Hubble’s Release The science paper by A.A. Chrimes et al.

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA has announced the winners of it’s 31st Human Exploration Rover Challenge . The annual engineering competition – one of the agency’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. NASA NASA has announced the winning student teams in the 2025 Human Exploration Rover Challenge. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. In the human-powered division, Parish Episcopal School in Dallas, Texas, earned first place in the high school division, and the Campbell University in Buies Creek, North Carolina, captured the college and university title. In the remote-control division, Bright Foundation in Surrey, British Columbia, Canada, earned first place in the middle and high school division, and the Instituto Tecnologico de Santa Domingo in the Dominican Republic, captured the college and university title.
      The annual engineering competition – one of NASA’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. The complete list of 2025 award winners is provided below:
      Human-Powered High School Division 
      First Place: Parish Episcopal School, Dallas, Texas Second Place: Ecambia High School, Pensacola, Florida Third Place: Centro Boliviano Americano – Santa Cruz, Bolivia Human-Powered College/University Division 
      First Place: Campbell University, Buies Creek, North Carolina Second Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Third Place: University of Alabama in Huntsville Remote-Control Middle School/High School Division
      First Place: Bright Foundation, Surrey, British Columbia, Canada Second Place: Assumption College, Brangrak, Bangkok, Thailand Third Place: Erie High School, Erie, Colorado Remote-Control College/University Division
      First Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Second Place: Campbell University, Buies Creek, North Carolina Third Place: Tecnologico de Monterey – Campus Cuernvaca, Xochitepec, Morelos, Mexico Ingenuity Award 
       Queen’s University, Kingston, Ontario, Canada Phoenix Award 
      Human-Powered High School Division: International Hope School of Bangladesh, Uttara, Dhaka, Bangladesh College/University Division: Auburn University, Auburn, Alabama Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Southwest Oklahoma State University, Weatherford, Oklahoma Task Challenge Award 
      Remote-Control Middle School/High School Division: Assumption College, Bangrak, Bangkok, Thailand College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Project Review Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: Campbell University, Buies Creek, North Carolina Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Featherweight Award 
      Campbell University, Buies Creek, North Carolina Safety Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: University of Alabama in Huntsville Crash and Burn Award 
      Universidad de Monterrey, Nuevo Leon, Mexico (Human-Powered Division) Team Spirit Award 
      Instituto Tecnologico de Santo Domingo, Dominican Republic (Human-Powered Division) STEM Engagement Award 
      Human-Powered High School Division: Albertville Innovation School, Albertville, Alabama College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Remote-Control Middle School/High School Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic College/University Division: Tecnologico de Monterrey, Nuevo Leon, Mexico Social Media Award
      Human-Powered High School Division: International Hope School of Bagladesh, Uttara, Dhaka, Bangladesh College/University Division: Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Remote-Control Middle School/High School Division: ATLAS SkillTech University, Mumbai, Maharashtra, India College/University Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic Most Improved Performance Award
      Human-Powered High School Division: Space Education Institute, Leipzig, Germany College/University Division: Purdue University Northwest, Hammond, Indiana Remote-Control Middle School/High School Division: Erie High School, Erie, Colorado College/University Division: Campbell University, Buies Creek, North Carolina Pit Crew Award
      Human-Powered High School Division: Academy of Arts, Career, and Technology, Reno, Nevada College/University Division: Queen’s University, Kingston, Ontario, Canada Artemis Educator Award
      Fabion Diaz Palacious from Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Rookie of the Year
      Deira International School, Dubai, United Arab Emirates

      More than 500 students with 75 teams from around the world participated in the  31st year of the competition. Participating teams represented 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations. Teams were awarded points based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing multiple safety and design reviews with NASA engineers. 
      NASA expanded the 2025 challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. 
      “This student design challenge encourages the next generation of scientists and engineers to engage in the design process by providing innovative concepts and unique perspectives,” said Vemitra Alexander, who leads the challenge for NASA’s Office of STEM Engagement at Marshall. “This challenge also continues NASA’s legacy of providing valuable experiences to students who may be responsible for planning future space missions, including crewed missions to other worlds.”
      The rover challenge is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which will land Americans on the Moon while establishing a long-term presence for science and exploration, preparing for future human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      The competition is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. Since its inception in 1994, more than 15,000 students have participated – with many former students now working at NASA, or within the aerospace industry.    
      To learn more about the Human Exploration Rover Challenge, please visit: 
      https://www.nasa.gov/roverchallenge/home/index.html
      News Media Contact
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...