Members Can Post Anonymously On This Site
What Is Aerodynamics? (Grades 5-8)
-
Similar Topics
-
By NASA
3 Min Read What Is Aerodynamics? (Grades K-4)
This article is for students grades K-4.
What Are the Four Forces of Flight?
Aerodynamics is the way air moves around things. The rules of aerodynamics explain how an airplane is able to fly. Anything that moves through air reacts to aerodynamics. A rocket blasting off the launch pad and a kite in the sky react to aerodynamics. Aerodynamics even acts on cars, since air flows around cars.
The four forces of flight are lift, weight, thrust and drag. These forces make an object move up and down, and faster or slower. How much of each force there is changes how the object moves through the air.
What Is Weight?
Everything on Earth has weight. This force comes from gravity pulling down on objects. To fly, an aircraft needs something to push it in the opposite direction from gravity. The weight of an object controls how strong the push has to be. A kite needs a lot less upward push than a jumbo jet does.
What Is Lift?
Lift is the push that lets something move up. It is the force that is the opposite of weight. Everything that flies must have lift. For an aircraft to move upward, it must have more lift than weight. A hot air balloon has lift because the hot air inside is lighter than the air around it. Hot air rises and carries the balloon with it. A helicopter’s lift comes from the rotor blades at the top of the helicopter. Their motion through the air moves the helicopter upward. Lift for an airplane comes from its wings.
How Do an Airplane’s Wings Provide Lift?
The shape of an airplane’s wings is what makes it able to fly. Airplanes’ wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. So, less air pressure is on top of the wing. This condition makes the wing, and the airplane it’s attached to, move up. Using curves to change air pressure is a trick used on many aircraft. Helicopter rotor blades use this trick. Lift for kites also comes from a curved shape. Even sailboats use this concept. A boat’s sail is like a wing. That’s what makes the sailboat move.
What Is Drag?
Drag is a force that tries to slow something down. It makes it hard for an object to move. It is harder to walk or run through water than through air. That is because water causes more drag than air. The shape of an object also changes the amount of drag. Most round surfaces have less drag than flat ones. Narrow surfaces usually have less drag than wide ones. The more air that hits a surface, the more drag it makes.
What Is Thrust?
Thrust is the force that is the opposite of drag. Thrust is the push that moves something forward. For an aircraft to keep moving forward, it must have more thrust than drag. A small airplane might get its thrust from a propeller. A larger airplane might get its thrust from jet engines. A glider does not have thrust. It can only fly until the drag causes it to slow down and land.
Read What Is Aerodynamics? (Grades 5-8)
Explore More For Students Grades K-4 View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This article is for students grades 5-8.
Alan Shepard was the first American in space. He was one of NASA’s first seven astronauts. Later, he walked on the moon during the Apollo program.
What Was Shepard’s Early Life Like?
Alan Shepard was born on Nov. 18, 1923. He was born in East Derry, N.H., and grew up there. He earned a Bachelor of Science degree from the United States Naval Academy. He served on a Navy ship in the Pacific Ocean during World War II. After the war, Shepard entered flight training and earned his pilot’s wings. He graduated from Naval Test Pilot School and Naval War College. In April 1959, NASA selected Shepard as a member of its first group of seven astronauts.
What Happened on Alan Shepard’s First Spaceflight?
On May 5, 1961, Alan Shepard became the first American in space. He flew on a one-person Mercury spacecraft that he named Freedom 7. It launched on a Redstone rocket. On this flight, Shepard did not orbit Earth. He flew 116 miles high and then returned safely. The flight lasted about 15 ½ minutes. The mission was a success.
What Happened After Shepard’s First Spaceflight?
After his first flight, Shepard developed a medical problem. An inner ear problem stopped him from flying in space. NASA named Shepard as chief of the Astronaut Office. He helped select new astronauts, plan missions and make sure astronauts were ready to fly. Later, he had surgery to fix the ear problem, and he was able to fly again. Almost 10 years passed between his first and second flights.
What Happened on Alan Shepard’s Second Spaceflight?
Shepard’s second spaceflight was on the Apollo 14 mission to the moon. He was commander of a crew that included Stuart Roosa and Edgar Mitchell. The Apollo spacecraft was launched on a Saturn V (5) rocket.
On Feb. 15, 1971, Shepard and Mitchell landed on the moon. (Roosa stayed in orbit around the moon while the other two landed.) During two moonwalks, Shepard and Mitchell collected more than 100 pounds of moon rocks. They conducted scientific experiments on the lunar surface. Shepard also became the first person to hit a golf ball on the moon, showing how far it would go in the moon’s lower gravity.
What Happened After Shepard’s Second Spaceflight?
After his second flight, Shepard returned to his job as head of the Astronaut Office. He retired from NASA in 1974. Shepard worked in private business. He also did volunteer work to support education and to help people learn about spaceflight. Shepard died of leukemia in 1998.
More About Alan Shepard
Alan Shepard: First American in Space
Alan Shepard – Ambassador of Exploration
Freedom 7
Apollo 14
What Was Project Mercury?
What Was the Apollo Program?
What Was the Saturn V?
Read Who Was Alan Shepard? (Grades K-4)
Explore More for Students Grades 5-8 View the full article
-
By NASA
4 Min Read What is an Engineer? (Grades K-4)
This article is for students grades K-4.
Engineers solve problems. They use science and math to create new things or make things work better. There are different kinds of engineers. They work on different kinds of projects. Some engineers design buildings or machines. Others find ways to move heat, power, or water from one place to another. Some create new tools.
NASA needs engineers. They design the things humans need to fly in space or on airplanes. Engineers make great ideas become real.
What do NASA engineers work on?
NASA has many missions. These missions need different kinds of engineers. Here are some of the ways engineers help NASA get the job done.
Spacecraft: These are vehicles that fly in space. NASA engineers decide how a spacecraft should be built and what it should do. They also make sure it will keep astronauts safe. Airplanes: NASA engineers work on airplanes. They design how the plane will look, how fast it will fly, and how much fuel it will use. Telescopes: Telescopes help us see space objects like stars and planets. Some telescopes are placed in orbit for the best view. NASA engineers design them to work in space. Computers: Computers can do complex tasks faster than people. NASA engineers write code that tells computers what to do. Anthony Vareha, NASA flight director Why is it fun to be a NASA engineer?
At NASA, engineers get to work on cool projects. They use science and creativity to find new ways to reach big goals. Here are some of the reasons they like their work.
“Being an engineer is like solving a huge puzzle or building something cool with building blocks. The difference is that the things we make help make the world better and improve people’s lives.” – Othmane Benefan, materials research engineer “I like being an engineer because I get to learn new things almost every day. Most of the engineering projects at NASA are super unique because we are building satellites that study new places all over the solar system (planets, asteroids, even the Sun), and it’s really fun to learn all the ways that we can use robots to explore.” – Phillip Hargrove, launch mission integration engineer “I love to build and create things. At NASA, there’s always something to do, and I get to work with people I enjoy.” – Jenna Sayler, aerospace engineer “I love being an engineer because I love trying to understand how things work. There’s a lot of stuff in our universe. Engineering is the tool I’ve chosen to help make sense of it all.” – Brian Kusnick, mechanical engineer Elaine Stewart, contamination control engineer What are some things I can do to help me become an engineer?
Be curious and excited to learn new things. Learn more about how different types of machines work. Practice making, building, or tinkering with things. Work hard in math and science classes. When you get to middle school or high school, try a NASA student challenge or apply to be a NASA intern. Students over age 16 can apply for NASA internships. Interns work on real projects. NASA team members help guide interns as they learn. Wendy Okolo, Ph.D., aerospace research engineer How can I try engineering today?
NASA has fun engineering activities that you can do at home. Here are a few to try:
Make and color a paper airplane. Let your imagination fly! Build a tower with pasta! How tall can you build it? Make a paper Mars helicopter. See which design works best! Build a new spacecraft using items in your house! A CubeSat is a small satellite. Try to build a CubeSat in this online game. When you do these projects, try them more than once. Make a small change each time. See if it makes your design work better. Engineering is all about testing ideas!
Learn More
JPL Education: Student Projects (Grades K-4) NASA Space Place Explore More for Students Grades K-4 View the full article
-
By NASA
3 Min Read How Does the Sun Behave? (Grades K-4)
This article is for students grades K-4.
The Sun is a star. It is the biggest object in our solar system. The Sun is about 93 million miles away from Earth and about 4.5 billion years old. The Sun affects Earth’s weather, seasons, climate, and more. Let’s learn about how the Sun behaves.
Why is the Sun warm and bright?
The Sun is a giant ball made of hydrogen and helium gases. Deep in the center of the Sun, hydrogen atoms are pressed together. This forms helium. When this happens, energy is released. That energy is the heat and light we feel and see all the way here on Earth.
Hydrogen atoms are pressed together to form helium. This releases energy in the form of heat and light. Does the Sun ever change?
Sometimes, the Sun is very active. It gives off a lot of energy. Other times, it is quieter. It gives off less energy. This pattern is called the solar cycle. One solar cycle lasts about 11 years.
Scientists call the time when the Sun is active “solar maximum.” During this time, we see darker, cooler spots on the Sun’s surface. These are called sunspots. When the Sun is less active, scientists call that “solar minimum.”
Scientists call the time when the Sun is active “solar maximum.” When the Sun is less active, scientists call that “solar minimum.” Does the Sun have a north pole?
Yes! Just like Earth, the Sun has north and south magnetic poles. But every 11 years, the Sun’s poles flip. North becomes south and south becomes north.
Every 11 years, the Sun’s poles flip. North becomes south and south becomes north. What is space weather?
Space weather includes things like solar wind, solar storms, and solar flares. When the Sun is active, these things can have an impact on Earth and in space.
Let’s learn more about space weather and how it affects our planet.
What is solar wind?
The solar wind is a constant wave of particles flowing out into space from the Sun’s surface. It travels deep into space. When the solar wind reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. These are called auroras or the northern and southern lights.
When the solar wind from the Sun reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. What are solar storms and solar flares?
The Sun’s magnetic fields are always moving. They twist and stretch. Sometimes they snap and reconnect. When this happens, it releases a burst of energy. This can cause a solar storm.
Solar storms can include solar flares. A solar flare is a blast of light and energy from the Sun’s surface. They usually erupt near sunspots. Solar flares happen more often during solar maximum and less often during solar minimum.
A solar flare is a blast of light and energy from the Sun’s surface. How does space weather affect Earth?
Earth is protected from most space weather. Our atmosphere and magnetic field act like a shield. But strong solar storms can still cause problems. Areas might lose electricity. Radios might not work. Satellites can be damaged. NASA keeps an eye on space weather. If strong storms are predicted, teams work to protect spacecraft and astronauts in space.
How are we learning more about the Sun?
A space probe is a robot that explores space. They often visit other planets, moons, or asteroids and comets that also orbit the Sun. NASA’s Parker Solar Probe launched to the Sun in 2018. The Parker Solar Probe is on a special mission. It flies very close to the Sun to collect information. This will help scientists learn new things about the Sun and how it affects life on Earth.
Visit these websites to read more about the Sun:
https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/menu/sun/ https://www.nasa.gov/stem-content/our-very-own-star-the-sun/ Read NASA Knows: How Does the Sun Behave? (Grades 5-8).
Explore More for Students Grades K-4
View the full article
-
By NASA
This article is for students grades 5-8.
The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.
What is the Sun, and what is it made of?
The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.
The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.
The Sun is a yellow dwarf star with a complex series of layers and features.NASA What is the solar cycle?
The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”
During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.
The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.
The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).NASA Wait. The Sun’s magnetic poles can flip??
Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.
Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.NASA What is space weather?
Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.
Let’s explore these phenomena and how they affect our planet.
Periods of increased solar activity can cause noticeable effects on Earth and in space.NASA What is solar wind?
Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.
Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.NASA What are solar storms, solar flares, and coronal mass ejections?
The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.
Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.
The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.NASA How do these phenomena affect Earth?
When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.
When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.NASA Learn more about the Sun
NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.
Visit these resources for more details about the Sun:
https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/all-about-the-sun/en/ https://science.nasa.gov/exoplanets/stars/ Explore More For Students Grades 5-8 View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.