Jump to content

NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise


Recommended Posts

  • Publishers
Posted
6 Min Read

NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise

An illustration of a host star, which looks like an orange globe with flares coming out on various sides with a very transparent cloud of blue dust spread out from the star. A dark orange horizontal ring of material circles the host star.
NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. Full illustration below.
Credits:
NASA, ESA, CSA, R. Crawford (STScI)

Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative surrounding what is believed to be the first star observed in the act of swallowing a planet. The new findings suggest that the star actually did not swell to envelop a planet as previously hypothesized. Instead, Webb’s observations show the planet’s orbit shrank over time, slowly bringing the planet closer to its demise until it was engulfed in full.

“Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said Ryan Lau, lead author of the new paper and astronomer at NSF NOIRLab (National Science Foundation National Optical-Infrared Astronomy Research Laboratory) in Tuscon, Arizona. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”

Two instruments aboard Webb conducted the post-mortem of the scene – Webb’s MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph). The researchers were able to come to their conclusion using a two-pronged investigative approach.

Image A: Planetary Engulfment Illustration

A four panel illustration, with two boxes on the top row and two boxes on the bottom row. They are labeled: 1, 2, 3, 4. Panel 1 shows a host star, which looks like an orange globe with flares coming out on various sides. There is a blue line with arrows forming a spiral around the star. At 2 o’clock in the outer spiral, furthest away from the star, there is a blue planet. Panel 2 shows the same star and lines, but the planet is now at 7 o’clock and closer to the star. It is a little stretched out toward the star, appearing like an American football or rugby ball instead of a sphere. Panel 3 shows the same star and lines, but the planet is fully engulfed by the star, with big flares coming out where the planet and star collided. Panel 4 shows the aftermath, with a very transparent cloud of blue dust spread out from the star. A dark orange horizontal ring of material circles the host star.
NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept.
NASA, ESA, CSA, R. Crawford (STScI)

Constraining the How

The star at the center of this scene is located in the Milky Way galaxy about 12,000 light-years away from Earth.

The brightening event, formally called ZTF SLRN-2020, was originally spotted as a flash of optical light using the Zwicky Transient Facility at the Palomar Observatory in San Diego, California. Data from NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) showed the star actually brightened in the infrared a year before the optical light flash, hinting at the presence of dust. This initial 2023 investigation led researchers to believe that the star was more Sun-like, and had been in the process of aging into a red giant over hundreds of thousands of years, slowly expanding as it exhausted its hydrogen fuel.

However, Webb’s MIRI told a different story. With powerful sensitivity and spatial resolution, Webb was able to precisely measure the hidden emission from the star and its immediate surroundings, which lie in a very crowded region of space. The researchers found the star was not as bright as it should have been if it had evolved into a red giant, indicating there was no swelling to engulf the planet as once thought.

Reconstructing the Scene

Researchers suggest that, at one point, the planet was about Jupiter-sized, but orbited quite close to the star, even closer than Mercury’s orbit around our Sun. Over millions of years, the planet orbited closer and closer to the star, leading to the catastrophic consequence.

“The planet eventually started to graze the star’s atmosphere. Then it was a runaway process of falling in faster from that moment,” said team member Morgan MacLeod of the Harvard-Smithsonian Center for Astrophysics and the Massachusetts Institute of Technology in Cambridge, Massachusetts. “The planet, as it’s falling in, started to sort of smear around the star.”

In its final splashdown, the planet would have blasted gas away from the outer layers of the star. As it expanded and cooled off, the heavy elements in this gas condensed into cold dust over the next year.

Inspecting the Leftovers

While the researchers did expect an expanding cloud of cooler dust around the star, a look with the powerful NIRSpec revealed a hot circumstellar disk of molecular gas closer in. Furthermore, Webb’s high spectral resolution was able to detect certain molecules in this accretion disk, including carbon monoxide.

“With such a transformative telescope like Webb, it was hard for me to have any expectations of what we’d find in the immediate surroundings of the star,” said Colette Salyk of Vassar College in Poughkeepsie, New York, an exoplanet researcher and co-author on the new paper. “I will say, I could not have expected seeing what has the characteristics of a planet-forming region, even though planets are not forming here, in the aftermath of an engulfment.”

The ability to characterize this gas opens more questions for researchers about what actually happened once the planet was fully swallowed by the star.

“This is truly the precipice of studying these events. This is the only one we’ve observed in action, and this is the best detection of the aftermath after things have settled back down,” Lau said. “We hope this is just the start of our sample.”

These observations, taken under Guaranteed Time Observation program 1240, which was specifically designed to investigate a family of mysterious, sudden, infrared brightening events, were among the first Target of Opportunity programs performed by Webb. These types of study are reserved for events, like supernova explosions, that are expected to occur, but researchers don’t exactly know when or where. NASA’s space telescopes are part of a growing, international network that stands ready to witness these fleeting changes, to help us understand how the universe works.

Researchers expect to add to their sample and identify future events like this using the upcoming Vera C. Rubin Observatory and NASA’s Nancy Grace Roman Space Telescope, which will survey large areas of the sky repeatedly to look for changes over time.

The team’s findings appear today in The Astrophysical Journal.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit: https://science.nasa.gov/webb

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the science paper from the The Astrophysical Journal.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braunhbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Read more about Webb’s impact on exoplanet research

Video: How to Study Exoplanets

Learn more about exoplanets

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. Supported by NASA’s Earth Science Technology Office (ESTO), this mission will mark a first for quantum sensing and will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water.
      A map of Earth’s gravity. Red indicates areas of the world that exert greater gravitational pull, while blue indicates areas that exert less. A science-grade quantum gravity gradiometer could one day make maps like this with unprecedented accuracy. Image Credit: NASA Earth’s gravitational field is dynamic, changing each day as geologic processes redistribute mass across our planet’s surface. The greater the mass, the greater the gravity.
      You wouldn’t notice these subtle changes in gravity as you go about your day, but with sensitive tools called gravity gradiometers, scientists can map the nuances of Earth’s gravitational field and correlate them to subterranean features like aquifers and mineral deposits. These gravity maps are essential for navigation, resource management, and national security.
      “We could determine the mass of the Himalayas using atoms,” said Jason Hyon, chief technologist for Earth Science at JPL and director of JPL’s Quantum Space Innovation Center. Hyon and colleagues laid out the concepts behind their Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument in a recent paper in EPJ Quantum Technology.
      Gravity gradiometers track how fast an object in one location falls compared to an object falling just a short distance away. The difference in acceleration between these two free-falling objects, also known as test masses, corresponds to differences in gravitational strength. Test masses fall faster where gravity is stronger.
      QGGPf will use two clouds of ultra-cold rubidium atoms as test masses. Cooled to a temperature near absolute zero, the particles in these clouds behave like waves. The quantum gravity gradiometer will measure the difference in acceleration between these matter waves to locate gravitational anomalies.
      Using clouds of ultra-cold atoms as test masses is ideal for ensuring that space-based gravity measurements remain accurate over long periods of time, explained Sheng-wey Chiow, an experimental physicist at JPL. “With atoms, I can guarantee that every measurement will be the same. We are less sensitive to environmental effects.”
      Using atoms as test masses also makes it possible to measure gravity with a compact instrument aboard a single spacecraft. QGGPf will be around 0.3 cubic yards (0.25 cubic meters) in volume and weigh only about 275 pounds (125 kilograms), smaller and lighter than traditional space-based gravity instruments.
      Quantum sensors also have the potential for increased sensitivity. By some estimates, a science-grade quantum gravity gradiometer instrument could be as much as ten times more sensitive at measuring gravity than classical sensors.
      The main purpose of this technology validation mission, scheduled to launch near the end of the decade, will be to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale.
      “No one has tried to fly one of these instruments yet,” said Ben Stray, a postdoctoral researcher at JPL. “We need to fly it so that we can figure out how well it will operate, and that will allow us to not only advance the quantum gravity gradiometer, but also quantum technology in general.”
      This technology development project involves significant collaborations between NASA and small businesses. The team at JPL is working with AOSense and Infleqtion to advance the sensor head technology, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland is working with Vector Atomic to advance the laser optical system.
      Ultimately, the innovations achieved during this pathfinder mission could enhance our ability to study Earth, and our ability to understand distant planets and the role gravity plays in shaping the cosmos. “The QGGPf instrument will lead to planetary science applications and fundamental physics applications,” said Hyon.
      To learn more about ESTO visit: https://esto.nasa.gov
      Share








      Details
      Last Updated Apr 15, 2025 Editor NASA Science Editorial Team Contact Gage Taylor gage.taylor@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Science-enabling Technology Earth Science Technology Office Technology Highlights Explore More
      5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet


      Article


      4 weeks ago
      4 min read Novel Metasurface Optical Element Could Shed New Light on Atmospheric Aerosols


      Article


      1 month ago
      5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging


      Article


      2 months ago
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft is launched on NASA’s SpaceX Crew-10 mission to the International Space Station.NASA/Aubrey Gemignani Digital content creators are invited to register to attend the launch of NASA’s SpaceX Crew-11 mission to carry astronauts to the International Space Station for a science expedition as part of NASA’s Commercial Crew Program. This will be the 15th time a SpaceX Dragon spacecraft launched by a Falcon 9 rocket takes crews to the orbital laboratory. 
      Launch of the Crew-11 mission is targeted for no earlier than July 2025 on a SpaceX Falcon 9 rocket from Florida. The launch will carry NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, and mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui and Roscosmos cosmonaut Oleg Platonov. 
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew11 mission launch. 
      A maximum of 50 social media users will be selected to attend this two-day event and will be given exclusive access to NASA’s Kennedy Space Center in Florida. 
      NASA Social participants will have the opportunity to: 
      View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft  Tour NASA facilities at the agency’s Kennedy Space Center in Florida  Meet and interact with Crew-11 subject-matter experts  Meet fellow space enthusiasts who are active on social media  NASA Social registration for the Crew-11 launch opens on Tuesday, April 15, and the deadline to apply is at 10 a.m. EDT on Monday, April 28. All social applications will be considered on a case-by-case basis. 
      APPLY NOW 
      Do I need to have a social media account to register? 
       Yes. This event is designed for people who: 
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience.  Regularly produce new content that features multimedia elements.  Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.  Must have an established history of posting content on social media platforms.  Have previous postings that are highly visible, respected and widely recognized.  Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew11. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. 
      How do I register? 
      Registration for this event opens on Tuesday, April 15, and the deadline to apply is at 10 a.m. EDT on Monday, April 28. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis. 
      Can I register if I am not a U.S. citizen? 
      Yes, this event is open for all to apply, ages 18 years and older. 
      When will I know if I am selected? 
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by May 30. 
      What are NASA Social credentials? 
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. 
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. 
      What are the registration requirements? 
      Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. You must be able to attend all days of NASA Social activities in order to view the launch
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 
      NASA Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. 
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. 
      All registrants must be at least 18 years old. 
      What if the launch date changes? 
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 
      If the launch is postponed, attendees may be invited to attend a later launch date but that is not guaranteed. 
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 
      What if I cannot come to the Kennedy Space Center? 
      If you cannot come to the Kennedy Space Center and attend all days in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  
      You can also become a virtual guest for NASA launches and milestone events. This free program gives access to curated resources, schedule changes, and mission specific information delivered straight to your inbox. Join us today! 
      You can watch the launch on NASA+. NASA will provide regular launch and mission updates on X at @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog. 
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! 
      Apply Now
      View the full article
    • By NASA
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that form water on the Moon. When a stream of charged particles known as the solar wind smashes into the lunar surface, the idea goes, it triggers a chemical reaction that could make water molecules.   
      Now, in the most realistic lab simulation of this process yet, NASA-led researchers have confirmed this prediction.  
      The finding, researchers wrote in a March 17 paper in JGR Planets, has implications for NASA’s Artemis astronaut operations at the Moon’s South Pole. A critical resource for exploration, much of the water on the Moon is thought to be frozen in permanently shadowed regions at the poles.  
      “The exciting thing here is that with only lunar soil and a basic ingredient from the Sun, which is always spitting out hydrogen, there’s a possibility of creating water,” Li Hsia Yeo, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s incredible to think about,” said Yeo, who led the study. 
      Solar wind flows constantly from the Sun. It’s made largely of protons, which are nuclei of hydrogen atoms that have lost their electrons. Traveling at more than one million miles per hour, the solar wind bathes the entire solar system. We see evidence of it on Earth when it lights up our sky in auroral light shows. 
      Computer-processed data of the solar wind from NASA’s STEREO spacecraft. Download here: https://svs.gsfc.nasa.gov/20278/ NASA/SwRI/Craig DeForest Most of the solar particles don’t reach the surface of Earth because our planet has a magnetic shield and an atmosphere to deflect them. But the Moon has no such protection. As computer models and lab experiments have shown, when protons smash into the Moon’s surface, which is made of a dusty and rocky material called regolith, they collide with electrons and recombine to form hydrogen atoms.
      Then, the hydrogen atoms can migrate through the lunar surface and bond with the abundant oxygen atoms already present in minerals like silica to form hydroxyl (OH) molecules, a component of water, and water (H2O) molecules themselves.  
      Scientists have found evidence of both hydroxyl and water molecules in the Moon’s upper surface, just a few millimeters deep. These molecules leave behind a kind of chemical fingerprint — a noticeable dip in a wavy line on a graph that shows how light interacts with the regolith. With the current tools available, though, it is difficult to tell the difference between hydroxyl and water, so scientists use the term “water” to refer to either one or a mix of both molecules.
      Many researchers think the solar wind is the main reason the molecules are there, though other sources like micrometeorite impacts could also help by creating heat and triggering chemical reactions. 
      In 2016, scientists discovered that water is released from the Moon during meteor showers. When a speck of comet debris strikes the moon, it vaporizes on impact, creating a shock wave in the lunar soil. With a sufficiently large impactor, this shock wave can breach the soil’s dry upper layer and release water molecules from a hydrated layer below. NASA’s LADEE spacecraft detected these water molecules as they entered the tenuous lunar atmosphere. NASA’s Goddard Space Flight Center Conceptual Image Lab Spacecraft measurements had already hinted that the solar wind is the primary driver of water, or its components, at the lunar surface. One key clue, confirmed by Yeo’s team’s experiment: the Moon’s water-related spectral signal changes over the course of the day.  
      In some regions, it’s stronger in the cooler morning and fades as the surface heats up, likely because water and hydrogen molecules move around or escape to space. As the surface cools again at night, the signal peaks again. This daily cycle points to an active source — most likely the solar wind—replenishing tiny amounts of water on the Moon each day.  
      To test whether this is true, Yeo and her colleague, Jason McLain, a research scientist at NASA Goddard, built a custom apparatus to examine Apollo lunar samples. In a first, the apparatus held all experiment components inside: a solar particle beam device, an airless chamber that simulated the Moon’s environment, and a molecule detector. Their invention allowed the researchers to avoid ever taking the sample out of the chamber — as other experiments did — and exposing it to contamination from the water in the air. 
      “It took a long time and many iterations to design the apparatus components and get them all to fit inside,” said McLain, “but it was worth it, because once we eliminated all possible sources of contamination, we learned that this decades-old idea about the solar wind turns out to be true.” 
      Using dust from two different samples picked up on the Moon by NASA’s Apollo 17 astronauts in 1972, Yeo and her colleagues first baked the samples to remove any possible water they could have picked up between air-tight storage in NASA’s space-sample curation facility at NASA’s Johnson Space Center in Houston and Goddard’s lab. Then, they used a tiny particle accelerator to bombard the dust with mock solar wind for several days — the equivalent of 80,000 years on the Moon, based on the high dose of the particles used. 
      They used a detector called a spectrometer to measure how much light the dust molecules reflected, which showed how the samples’ chemical makeup changed over time. 
      In the end, the team saw a drop in the light signal that bounced to their detector precisely at the point in the infrared region of the electromagnetic spectrum — near 3 microns — where water typically absorbs energy, leaving a telltale signature.  
      While they can’t conclusively say if their experiment made water molecules, the researchers reported in their study that the shape and width of the dip in the wavy line on their graph suggests that both hydroxyl and water were produced in the lunar samples.  
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin


      Article


      2 hours ago
      3 min read What Does NASA Science Do For Me?


      Article


      4 hours ago
      3 min read Exploring the Universe Through Sight, Touch, and Sound


      Article


      20 hours ago
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin
      This is an artist’s impression of a magnetar, a special type of neutron star with an incredibly strong magnetic field. Credits:
      ESA Researchers using NASA’s Hubble Space Telescope have discovered the magnetar called SGR 0501+4516 is traversing our galaxy from an unknown place of origin. Researchers say that this runaway magnetar is the likeliest candidate in our Milky Way galaxy for a magnetar that was not born in a supernova explosion as initially predicted. It is so strange it might even offer clues to the mechanism behind events known as fast radio bursts.
      “Magnetars are neutron stars — the dead remnants of stars — composed entirely of neutrons. What makes magnetars unique is their extreme magnetic fields,” said Ashley Chrimes, lead author of the discovery paper published in the April 15 journal Astronomy & Astrophysics. Chrimes is a European Space Agency Research Fellow at the European Space Research and Technology Center in the Netherlands.
      Magnetars have comic-book-hero superpowers. A magnetar has a magnetic field about a trillion times more powerful than Earth’s magnetosphere. If a magnetar flew by Earth at half the Moon’s distance, its intense field would wipe out every credit card on our planet. If a human got within 600 miles, the magnetar would become a proverbial sci-fi death-ray, ripping apart every atom inside the body.
      The magnetar’s strangeness was identified with the help of Hubble’s sensitive instruments as well as precise benchmarks from ESA’s (European Space Agency) Gaia spacecraft.
      Initially, the mysterious magnetar was discovered in 2008 when NASA’s Swift Observatory spotted brief, intense flashes of gamma rays from the outskirts of the Milky Way. The source, which turned out to be one of only about 30 known magnetars in the Milky Way, was dubbed SGR 0501+4516.
      This is an artist’s impression of a magnetar, which is a special type of neutron star with an incredibly strong magnetic field. Neutron stars are some of the most compact and extreme objects in the universe. These stars typically pack more than the mass of the Sun into a sphere of neutrons about 12 miles across. The neutron star is depicted as a white-blueish sphere. The magnetic field is shown as filaments streaming out from its polar regions. Illustration: ESA Because magnetars are neutron stars, the natural explanation for their formation is that they are born in supernovae, when a star explodes and can collapse down to an ultra-dense neutron star. This appeared to be the case for SGR 0501+4516, which is located close to a supernova remnant called HB9. The separation between the magnetar and the center of the supernova remnant on the sky is just 80 arcminutes, or slightly wider than your pinky finger when viewed at the end of your outstretched arm.
      But a decade-long study with Hubble cast doubt on the magnetar’s birthplace. After initial observations with ground-based telescopes shortly after SGR 0501+4516’s discovery, researchers used Hubble’s exquisite sensitivity and steady pointing to spot the magnetar’s faint infrared glow in 2010, 2012, and 2020. Each of these images was aligned to a reference frame defined by observations from the Gaia spacecraft, which has crafted an extraordinarily precise three-dimensional map of nearly two billion stars in the Milky Way. This method revealed the subtle motion of the magnetar as it traversed the sky.
      “All of this movement we measure is smaller than a single pixel of a Hubble image,” said co-investigator Joe Lyman of the University of Warwick, United Kingdom. “Being able to robustly perform such measurements really is a testament to the long-term stability of Hubble.”
      By tracking the magnetar’s position, the team was able to measure the object’s apparent motion across the sky. Both the speed and direction of SGR 0501+4516’s movement showed that the magnetar could not be associated with the nearby supernova remnant. Tracing the magnetar’s trajectory thousands of years into the past showed that there were no other supernova remnants or massive star clusters with which it could be associated.
      If SGR 0501+4516 was not born in a supernova, the magnetar must either be older than its estimated 20,000-year age, or it may have formed in another way. Magnetars may also be able to form through the merger of two lower-mass neutron stars or through a process called accretion-induced collapse. Accretion-induced collapse requires a binary star system containing a white dwarf: the core of a dead Sun-like star. If the white dwarf pulls in gas from its companion, it can grow too massive to support itself, leading to an explosion — or possibly the creation of a magnetar.
      “Normally, this scenario leads to the ignition of nuclear reactions, and the white dwarf exploding, leaving nothing behind. But it has been theorized that under certain conditions, the white dwarf can instead collapse into a neutron star. We think this might be how SGR 0501 was born,” added Andrew Levan of Radboud University in the Netherlands and the University of Warwick in the United Kingdom.
      Understanding Fast Radio Bursts
      SGR 0501+4516 is currently the best candidate for a magnetar in our galaxy that may have formed through a merger or accretion-induced collapse. Magnetars that form through accretion-induced collapse could provide an explanation for some of the mysterious fast radio bursts, which are brief but powerful flashes of radio waves. In particular, this scenario may explain the origin of fast radio bursts that emerge from stellar populations too ancient to have recently birthed stars massive enough to explode as supernovae.
      “Magnetar birth rates and formation scenarios are among the most pressing questions in high-energy astrophysics, with implications for many of the universe’s most powerful transient events, such as gamma-ray bursts, super-luminous supernovae, and fast radio bursts,” said Nanda Rea of the Institute of Space Sciences in Barcelona, Spain.
      The research team has further Hubble observations planned to study the origins of other magnetars in the Milky Way, helping to understand how these extreme magnetic objects form.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Related Images & Videos
      Illustration of Magnetar
      This is an artist’s impression of a magnetar, which is a special type of neutron star with an incredibly strong magnetic field.




      Share








      Details
      Last Updated Apr 15, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Science Ashley Chrimes
      ESA-ESTEC/Radboud University
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Magnetars Neutron Stars Stars The Universe
      Related Links and Documents
      ESA/Hubble’s Release The science paper by A.A. Chrimes et al.

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
    • By NASA
      3 min read
      What Does NASA Science Do For Me?
      It is easy to forget that all of the hard work, technology, and money that NASA pours into space research actually comes back down to Earth. In fact, many of NASA’s missions and research focus on our planet! NASA also has many other projects with partners that use their research to enrich everyone’s lives here on Earth- and this is not including such notable achievements as satellite weather maps!
      The NASA Spinoff program was created over fifty years ago to facilitate the licensing and development of NASA’s technologies for commercial use by other companies and agencies. This program helps “spin off” NASA’s technology for use by others here on Earth and, in some cases, in space. To date, over 2,000 spinoff technologies have been documented by the NASA Spinoff program.
      Some notable examples of NASA spinoffs include:
      Solar Cells Water Purification Memory foam for your cozy bed and chairs Firefighting equipment, especially lightweight fireproof clothing and masks with much-improved air filters Highway safety grooves, which help your car go around curves without slipping off by giving your tire better traction Many safety features in modern aircraft, such as de-icing technologies for wings, chemical detectors and imaging for plane maintenance, improved flight controls, and many more Image stabilization for your binoculars and video cameras The Dustbuster Healthier baby food …and many more! Check out this Wikipedia page for a more extensive list of the technologies that NASA has had a direct role in developing, many of which we now take for granted.
      It is worth noting that there are a few technologies commonly thought to have been created by NASA that were actually independently developed. Tang is a great example; it was developed by General Foods in 1957 and attained fame when used during food testing by NASA in the 60s (even though some astronauts were not fans of the powdery, not-quite-orange juice). The microwave oven is another famous technology often falsely thought of as a NASA development. It was, in fact, created shortly after World War 2, when radar technicians discovered that it wasn’t such a good idea to stand in front of active equipment! Thankfully, they found out via a melted candy bar and not from severe burns!
      Every year, NASA releases a report on its program, and the 2025 edition of the NASA Spinoff magazine is now available! You can view the entire NASA Spinoff archive, dating back to 1976, here.
      Originally posted by Dave Prosper: May 2013
      Last Updated by Kat Troche: March 2025
      View the full article
  • Check out these Videos

×
×
  • Create New...