Jump to content

Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision


Recommended Posts

  • Publishers
Posted
3 Min Read

Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision

This visual shows three panels that each show Uranus and dynamic aurora activity. The images were captured in October 2022 on the 8th, 10, and 24th respectively. Each image shows the planet with a strong blue hue and a visible white region. A faint ring is also visible around the planet in each image. Each image shows fuzzy blue/purple regions hovering over the planet in different locations to indicate the aurorae.
These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022.
Credits:
ESA/Hubble, NASA, L. Lamy, L. Sromovsky

An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements of Uranus’ interior rotation rate with a novel technique, achieving a level of accuracy 1,000 times greater than previous estimates. By analyzing more than a decade of Hubble observations of Uranus’ aurorae, researchers have refined the planet’s rotation period and established a crucial new reference point for future planetary research.

This visual shows three panels that each show Uranus and dynamic aurora activity. The images were captured in October 2022 on the 8th, 10, and 24th respectively. Each image shows the planet with a strong blue hue and a visible white region. A faint ring is also visible around the planet in each image. Each image shows fuzzy blue/purple regions hovering over the planet in different locations to indicate the aurorae.
These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research.
ESA/Hubble, NASA, L. Lamy, L. Sromovsky

Determining a planet’s interior rotation rate is challenging, particularly for a world like Uranus, where direct measurements are not possible. A team led by Laurent Lamy (of LIRA, Observatoire de Paris-PSL and LAM, Aix-Marseille Univ., France), developed an innovative method to track the rotational motion of Uranus’ aurorae: spectacular light displays generated in the upper atmosphere by the influx of energetic particles near the planet’s magnetic poles. This technique revealed that Uranus completes a full rotation in 17 hours, 14 minutes, and 52 seconds — 28 seconds longer than the estimate obtained by NASA’s Voyager 2 during its 1986 flyby.

“Our measurement not only provides an essential reference for the planetary science community but also resolves a long-standing issue: previous coordinate systems based on outdated rotation periods quickly became inaccurate, making it impossible to track Uranus’ magnetic poles over time,” explains Lamy. “With this new longitude system, we can now compare auroral observations spanning nearly 40 years and even plan for the upcoming Uranus mission.”

This Hubble image shows Uranus and dynamic aurora activity on 10 October 2022. The planet is dominated by a blue hue and a large white region in the lower left. A faint ring is also visible around the planet. Fuzzy blue/purple regions hovering over the planet on the left and ride indicate the presence of aurorae.
This image of Uranus’ aurorae was taken by the NASA/ESA Hubble Space Telescope on 10 October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research.
ESA/Hubble, NASA, L. Lamy, L. Sromovsky

This breakthrough was possible thanks to Hubble’s long-term monitoring of Uranus. Over more than a decade, Hubble has regularly observed its ultraviolet auroral emissions, enabling researchers to produce magnetic field models that successfully match the changing position of the magnetic poles with time.

“The continuous observations from Hubble were crucial,” says Lamy. “Without this wealth of data, it would have been impossible to detect the periodic signal with the level of accuracy we achieved.”

Unlike the aurorae of Earth, Jupiter, or Saturn, Uranus’ aurorae behave in a unique and unpredictable manner. This is due to the planet’s highly tilted magnetic field, which is significantly offset from its rotational axis. The findings not only help astronomers understand Uranus’ magnetosphere but also provide vital information for future missions.

These findings set the stage for further studies that will deepen our understanding of one of the most mysterious planets in the Solar System. With its ability to monitor celestial bodies over decades, the Hubble Space Telescope continues to be an indispensable tool for planetary science, paving the way for the next era of exploration at Uranus.

These results are based on observations acquired with Hubble programs GO #12601, 13012, 14036, 16313 and DDT #15380 (PI: L. Lamy). The team’s paper was published in Nature Astronomy.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.


Share

Details

Last Updated
Apr 09, 2025
Editor
Andrea Gianopoulos
Contact
Media

Claire Andreoli
Astrophysics Communications Manager
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov

Bethany Downer
ESA/Hubble Chief Science Communications Officer
Bethany.Downer@esahubble.org

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin
      This is an artist’s impression of a magnetar, a special type of neutron star with an incredibly strong magnetic field. Credits:
      ESA Researchers using NASA’s Hubble Space Telescope have discovered the magnetar called SGR 0501+4516 is traversing our galaxy from an unknown place of origin. Researchers say that this runaway magnetar is the likeliest candidate in our Milky Way galaxy for a magnetar that was not born in a supernova explosion as initially predicted. It is so strange it might even offer clues to the mechanism behind events known as fast radio bursts.
      “Magnetars are neutron stars — the dead remnants of stars — composed entirely of neutrons. What makes magnetars unique is their extreme magnetic fields,” said Ashley Chrimes, lead author of the discovery paper published in the April 15 journal Astronomy & Astrophysics. Chrimes is a European Space Agency Research Fellow at the European Space Research and Technology Center in the Netherlands.
      Magnetars have comic-book-hero superpowers. A magnetar has a magnetic field about a trillion times more powerful than Earth’s magnetosphere. If a magnetar flew by Earth at half the Moon’s distance, its intense field would wipe out every credit card on our planet. If a human got within 600 miles, the magnetar would become a proverbial sci-fi death-ray, ripping apart every atom inside the body.
      The magnetar’s strangeness was identified with the help of Hubble’s sensitive instruments as well as precise benchmarks from ESA’s (European Space Agency) Gaia spacecraft.
      Initially, the mysterious magnetar was discovered in 2008 when NASA’s Swift Observatory spotted brief, intense flashes of gamma rays from the outskirts of the Milky Way. The source, which turned out to be one of only about 30 known magnetars in the Milky Way, was dubbed SGR 0501+4516.
      This is an artist’s impression of a magnetar, which is a special type of neutron star with an incredibly strong magnetic field. Neutron stars are some of the most compact and extreme objects in the universe. These stars typically pack more than the mass of the Sun into a sphere of neutrons about 12 miles across. The neutron star is depicted as a white-blueish sphere. The magnetic field is shown as filaments streaming out from its polar regions. Illustration: ESA Because magnetars are neutron stars, the natural explanation for their formation is that they are born in supernovae, when a star explodes and can collapse down to an ultra-dense neutron star. This appeared to be the case for SGR 0501+4516, which is located close to a supernova remnant called HB9. The separation between the magnetar and the center of the supernova remnant on the sky is just 80 arcminutes, or slightly wider than your pinky finger when viewed at the end of your outstretched arm.
      But a decade-long study with Hubble cast doubt on the magnetar’s birthplace. After initial observations with ground-based telescopes shortly after SGR 0501+4516’s discovery, researchers used Hubble’s exquisite sensitivity and steady pointing to spot the magnetar’s faint infrared glow in 2010, 2012, and 2020. Each of these images was aligned to a reference frame defined by observations from the Gaia spacecraft, which has crafted an extraordinarily precise three-dimensional map of nearly two billion stars in the Milky Way. This method revealed the subtle motion of the magnetar as it traversed the sky.
      “All of this movement we measure is smaller than a single pixel of a Hubble image,” said co-investigator Joe Lyman of the University of Warwick, United Kingdom. “Being able to robustly perform such measurements really is a testament to the long-term stability of Hubble.”
      By tracking the magnetar’s position, the team was able to measure the object’s apparent motion across the sky. Both the speed and direction of SGR 0501+4516’s movement showed that the magnetar could not be associated with the nearby supernova remnant. Tracing the magnetar’s trajectory thousands of years into the past showed that there were no other supernova remnants or massive star clusters with which it could be associated.
      If SGR 0501+4516 was not born in a supernova, the magnetar must either be older than its estimated 20,000-year age, or it may have formed in another way. Magnetars may also be able to form through the merger of two lower-mass neutron stars or through a process called accretion-induced collapse. Accretion-induced collapse requires a binary star system containing a white dwarf: the core of a dead Sun-like star. If the white dwarf pulls in gas from its companion, it can grow too massive to support itself, leading to an explosion — or possibly the creation of a magnetar.
      “Normally, this scenario leads to the ignition of nuclear reactions, and the white dwarf exploding, leaving nothing behind. But it has been theorized that under certain conditions, the white dwarf can instead collapse into a neutron star. We think this might be how SGR 0501 was born,” added Andrew Levan of Radboud University in the Netherlands and the University of Warwick in the United Kingdom.
      Understanding Fast Radio Bursts
      SGR 0501+4516 is currently the best candidate for a magnetar in our galaxy that may have formed through a merger or accretion-induced collapse. Magnetars that form through accretion-induced collapse could provide an explanation for some of the mysterious fast radio bursts, which are brief but powerful flashes of radio waves. In particular, this scenario may explain the origin of fast radio bursts that emerge from stellar populations too ancient to have recently birthed stars massive enough to explode as supernovae.
      “Magnetar birth rates and formation scenarios are among the most pressing questions in high-energy astrophysics, with implications for many of the universe’s most powerful transient events, such as gamma-ray bursts, super-luminous supernovae, and fast radio bursts,” said Nanda Rea of the Institute of Space Sciences in Barcelona, Spain.
      The research team has further Hubble observations planned to study the origins of other magnetars in the Milky Way, helping to understand how these extreme magnetic objects form.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Related Images & Videos
      Illustration of Magnetar
      This is an artist’s impression of a magnetar, which is a special type of neutron star with an incredibly strong magnetic field.




      Share








      Details
      Last Updated Apr 15, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Science Ashley Chrimes
      ESA-ESTEC/Radboud University
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Magnetars Neutron Stars Stars The Universe
      Related Links and Documents
      ESA/Hubble’s Release The science paper by A.A. Chrimes et al.

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Captures a Star’s Swan Song
      This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55. ESA/Hubble & NASA, K. Noll The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal, like a portal to another world opening up before us. In fact, the subject of this NASA/ESA Hubble Space Telescope image is very real. We are seeing vast clouds of ionized atoms and molecules, thrown into space by a dying star. This is a planetary nebula named Kohoutek 4-55, a member of the Milky Way galaxy situated just 4,600 light-years away in the constellation Cygnus (the Swan).
      Planetary nebulae are the spectacular final display at the end of a giant star’s life. Once a red giant star has exhausted its available fuel and shed its last layers of gas, its compact core will contract further, enabling a final burst of nuclear fusion. The exposed core reaches extremely hot temperatures, radiating ultraviolet light that energizes the enormous clouds of gas cast off by the star. The ultraviolet light ionizes atoms in the gas, making the clouds glow brightly. In this image, red and orange indicate nitrogen, green is hydrogen, and blue shows oxygen. Kohoutek 4-55 has an uncommon, multi-layered form: a faint layer of gas surrounds a bright inner ring, all wrapped in a broad halo of ionized nitrogen. The spectacle is bittersweet, as the brief phase of fusion in the core will end after only tens of thousands of years, leaving a white dwarf that will never illuminate the clouds around it again.
      This image itself was also the final work of one of Hubble’s instruments: the Wide Field and Planetary Camera 2 (WFPC2). Installed in 1993 to replace the original Wide Field and Planetary Camera, WFPC2 was responsible for some of Hubble’s most enduring images and fascinating discoveries. Hubble’s Wide Field Camera 3 replaced WFPC2 in 2009, during Hubble’s final servicing mission. A mere ten days before astronauts removed Hubble’s WFPC2 from the telescope, the instrument collected the data used in this image: a fitting send-off after 16 years of discoveries. Image processors used the latest and most advanced processing techniques to bring the data to life one more time, producing this breathtaking new view of Kohoutek 4-55.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Apr 10, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Planetary Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      The Death Throes of Stars


      From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


      Exploring the Birth of Stars


      Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


      Hubble’s Nebulae


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Have we ever been to Uranus?

      The answer is simple, yes, but only once. The Voyager II spacecraft flew by the planet Uranus back in 1986, during a golden era when the Voyager spacecraft explored all four giant planets of our solar system. It revealed an extreme world, a planet that had been bowled over onto its side by some extreme cataclysm early in the formation of the solar system.

      That means that its seasons and its magnetic field get exposed to the most dramatic seasonal variability of any place that we know of in the solar system. The atmosphere was a churning system made of methane and hydrogen and water, with methane clouds showing up as white against the bluer background of the planet itself.
      The densely packed ring system is host to a number of very fine, narrow and dusty rings surrounded by a collection of icy satellites. And those satellites may harbor deep, dark, hidden oceans beneath an icy crust of water ice.

      Taken together, this extreme and exciting system is somewhere that we simply must go back to explore and hopefully in the next one to two decades NASA and the European Space Agency will mount an ambitious mission to go out there and explore the Uranian system. It’s important not just for solar system science, but also for the growing field of exoplanet science. As planets of this particular size, the size of Uranus, about four times wider than planet Earth, seem to be commonplace throughout our galaxy.

      So how have we been to Uranus? Yes, but it’s time that we went back.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 10, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division Planets The Solar System Uranus Explore More
      6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
      Article 1 hour ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 19 hours ago 2 min read NASA’s Planetary Defenders Documentary Premieres April 16
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Have We Been to Uranus? We Asked a NASA Expert
    • By NASA
      Deputy Integration and Testing Manager – Goddard Space Flight Center
      Mike Drury began at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as a temporary technician — a contractor hired for six weeks to set up High Capacity Centrifuge tests. Six weeks then turned into three months and, eventually, over 40 years.
      Mike Drury, the deputy integration and testing manager for NASA’s Nancy Grace Roman Space Telescope, stands inside a clean room in front of Roman’s primary support structure and propulsion system. The “bunny suit” that he’s wearing protects the telescope from contaminants like dust, hair, and skin.NASA/Chris Gunn Now, Mike is the deputy integration and testing manager for NASA’s Nancy Grace Roman Space Telescope. In this role, Mike oversees both Roman’s assembly and the many verification processes that ensure it is ready for launch.
      “It’s a privilege to work here. There’s really no regrets,” Mike says. “This is a big place, and it is what you make it. You can really spread your wings and go into a lot of different areas and do different things.”
      When Mike first began at Goddard, only government-employed technicians could work on space flight hardware. However, times were changing. The “old-timers,” as Mike affectionately calls them, soon began training a small group of contractors, including Mike, for flight hardware work. Mike credits these “old-timers” for the mindset he still carries decades later.
      “They taught me how to approach things and execute, and that helped me through my entire career,” Mike says. “It’s that approach — making sure things are done right, without cutting any corners — that I always liked about working here.”
      Not everyone can say that they worked on space missions while in college, but Mike can. Mike took advantage of a program through his contract that paid for classes. For 10 years, Mike studied at Anne Arundel Community College while continuing full-time work at Goddard, eventually earning an associate’s degree in mathematics. 
      While in community college, Mike also stocked up on several physics and calculus credits which helped prepare him to study thermal engineering at Johns Hopkins University. After seven more years of night classes, Mike completed a bachelor’s degree in mechanical engineering. 
      “Night school was really difficult between full-time work and traveling because I was working on several missions,” Mike says. “You needed that perseverance to just keep going and working away at it. So I just hung in there.”
      In this 1989 picture, Mike works on NASA’s BBXRT (Broad Band X-ray Telescope) at NASA’s Kennedy Space Center in Florida. BBXRT flew on the space shuttle Columbia in 1990.NASA In his 17 years of night school, Mike worked on seven missions, expanding his skill set from test set-up, to clean room tech work, to training astronauts. While working on the Hubble Space Telescope, Mike helped to train astronauts for their in-orbit tech work to install various instruments. 
      “Every mission I’ve worked on I’ve learned something,” Mike says. “Every test you learn more and more about other disciplines.”
      After graduating from Johns Hopkins, Mike worked for a short time as an engineer before becoming an integration supervisor. In 2006, Mike took on the position of James Webb Space Telescope ISIM (Integrated Science Instrument Module) integration and test manager. After Webb’s ISIM was integrated with the Optical Telescope Element, Mike became the OTIS (Optical Telescope Element and Integrated Science Instrument Module) integration and testing manager.
      “It was a tough eight to 10 years of work,” Mike says. “Loading the OTIS into the shipping container to be sent to NASA’s Johnson Space Center in Houston for further testing was a great accomplishment.” 
      To ensure that Webb’s ISIM would thrive in space, Mike was involved in more than three months of round-the-clock thermal vacuum testing. During this time, a blizzard stranded Mike and others on-site at Goddard for three days. Mike spent his nights overseeing thermal vacuum tests and his days driving test directors and operators to their nearby hotel rooms with his four-wheel-drive truck — a winter storm savior in short supply.
      In this 1992 picture, Mike works alongside another technician on DXS (Diffuse X-Ray Spectrometer) in the shuttle bay at NASA’s Kennedy Space Center in Florida. DXS was a University of Wisconsin-Madison experiment flown during the January 1993 flight of NASA’s Space Shuttle Endeavor.NASA For Mike, the hard work behind space missions is well worth it.
      “As humans, we want to discover new things and see things. That’s what keeps me coming back — the thought of discovery and space flight,” Mike says. “I get excited talking to some of the Hubble or Webb scientists about the discoveries they’ve made. They answer questions but they also find themselves asking new ones.”
      Some of these new questions opened by Hubble and Webb will be addressed by Mike’s current project — Roman.
      “This team I would say is the best I’ve ever worked with. I say that because it’s the Goddard family. Everyone here on Roman has the same agenda, and that’s a successful, on-time launch,” Mike says. “My ultimate goal is to be staying on the beach in Florida after watching Roman blast off. That would be all the icing on the cake.”
      Mike is also focusing on laying the groundwork for the next era at Goddard. He works hard to instill a sense of import, intention, and precision in his successors, just as the “old-timers” instilled in him 40 years ago.
      “I talk to a lot of my colleagues that I’ve worked with for years, and we’re all excited to hand it off to the next generation,” Mike says. “It’s so exciting to see. I’m the old guy now.”
      By Laine Havens
      NASA’s Goddard Space Flight Center
      View the full article
  • Check out these Videos

×
×
  • Create New...