Members Can Post Anonymously On This Site
Sols 4505-4506: Up, up and onto the Devil’s Gate
-
Similar Topics
-
By NASA
Explore This Section Science Science Activation Exploring the Universe Through… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Exploring the Universe Through Sight, Touch, and Sound
For the first time in history, we can explore the universe through a rich blend of senses—seeing, touching, and hearing astronomical data—in ways that deepen our understanding of space. While three-dimensional (3D) models are essential tools for scientific discovery and analysis, their potential extends far beyond the lab.
Space can often feel distant and abstract, like watching a cosmic show unfold on a screen light-years away. But thanks to remarkable advances in technology, software, and science, we can now transform telescope data into detailed 3D models of objects millions or even billions of miles away. These models aren’t based on imagination—they are built from real data, using measurements of motion, light, and structure to recreate celestial phenomena in three dimensions.
What’s more, we can bring these digital models into the physical world through 3D printing. Using innovations in additive manufacturing, data becomes something you can hold in your hands. This is particularly powerful for children, individuals who are blind or have low vision, and anyone with a passion for lifelong learning. Now, anyone can quite literally grasp a piece of the universe.
These models also provide a compelling way to explore concepts like scale. While a 3D print might be just four inches wide, the object it represents could be tens of millions of billions of times larger—some are so vast that a million Earths could fit inside them. Holding a scaled version of something so massive creates a bridge between human experience and cosmic reality.
In addition to visualizing and physically interacting with the data, we can also listen to it. Through a process called sonification, telescope data is translated into sound, making information accessible and engaging in a whole new way. Just like translating a language, sonification conveys the essence of astronomical data through audio, allowing people to “hear” the universe.
To bring these powerful experiences to communities across the country, NASA’s Universe of Learning, in collaboration with the Library of Congress, NASA’s Chandra X-ray Observatory, and the Space Telescope Science Institute, has created Mini Stars 3D Kits that explore key stages of stellar evolution. These kits have been distributed to Library of Congress state hubs across the United States to engage local learners through hands-on and multisensory discovery.
Each Mini Stars Kit includes:
Three 3D-printed models of objects within our own Milky Way galaxy: Pillars of Creation (M16/Eagle Nebula) – a stellar nursery where new stars are born Eta Carinae – a massive, unstable star system approaching the end of its life Crab Nebula – the aftermath of a supernova, featuring a dense neutron star at its core Audio files with data sonifications for each object—mathematical translations of telescope data into sound Descriptive text to guide users through each model’s scientific significance and sensory interpretation These kits empower people of all ages and abilities to explore the cosmos through touch and sound—turning scientific data into a deeply human experience. Experience your universe through touch and sound at: https://chandra.si.edu/tactile/ministar.html
Credits:
3D Prints Credit: NASA/CXC/ K. Arcand, A. Jubett, using software by Tactile Universe/N. Bonne & C. Krawczyk & Blender
Sonifications: Dr. Kimberly Arcand (CXC), astrophysicist Dr. Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project)
3D Model: K. Arcand, R. Crawford, L. Hustak (STScI)
Photo of NASA’s Universe of Learning (UoL) 3D printed mini star kits sent to the Library of Congress state library hubs. The kits include 3D printed models of stars, sonifications, data converted into sound, and descriptive handouts available in both text and braille. Share
Details
Last Updated Apr 14, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation 3D Resources Astrophysics Manufacturing, Materials, 3-D Printing The Universe Explore More
5 min read With NASA’s Webb, Dying Star’s Energetic Display Comes Into Full Focus
Article
5 hours ago
4 min read GLOBE Mission Earth Supports Career Technical Education
Article
3 days ago
2 min read Hubble Captures a Star’s Swan Song
Article
3 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4507-4508: “Just Keep Driving”
NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC. NASA/JPL-Caltech/MSSS Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
Earth planning date: Wednesday, April 9, 2025
Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).
Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here.
ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.
Explore More
3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate
Article
3 days ago
3 min read Sols 4502-4504: Sneaking Past Devil’s Gate
Article
4 days ago
3 min read Sols 4500-4501: Bedrock With a Side of Sand
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars Resources
Explore this page for a curated collection of Mars resources.
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Curiosity Rover (MSL)
View the full article
-
By NASA
Explore This Section Science Science Activation GLOBE, NASA, and the Monsignor… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
GLOBE, NASA, and the Monsignor McClancy Memorial High School in Queens, New York
When students actively participate in scientific investigations that connect to their everyday lives, something powerful happens: they begin to see themselves as scientists. This sense of relevance and ownership can spark a lifelong interest in science, technology, engineering, and math (STEM), paving the way for continued education and even future careers in these fields. Opportunities to engage directly with NASA science—like the one you’ll read about in this story—not only deepen students’ understanding of STEM concepts, but also nourish their curiosity and confidence. With the support of passionate educators, these moments of participation become stepping stones to a future in which students see themselves as contributors to real-world science.
In September 2021, Ms. Deanna Danke, a Monsignor McClancy Memorial High School mathematics teacher in Queens, New York, began teaching her students how to measure tree heights using trigonometry. Soon enough, Ms. Danke discovered the Global Learning and Observations to Benefit the Environment (GLOBE) Observer Trees Tool, and with her 150+ students, began taking tree height observations around the school, an activity that Ms. Danke and her students continue to participate in today. Her and her students’ hundreds of repeat tree height observations have provided student and professional researchers with clusters of measurements that can coincide with measurements made by NASA satellite instruments, allowing for a comparison of datasets that can be analyzed over time.
Due to the consistent tree height data collection resulting from this effort, Ms. Danke was asked to be a co-author on a peer-reviewed research paper that was published on June 21, 2022 in the Environmental Research Letters special journal “Focus on Public Participation in Environmental Research.” The paper, “The potential of citizen science data to complement satellite and airborne lidar tree height measurements: lessons from The GLOBE Program,” included data from the tree height observations reported by Ms. Danke and her students—an incredible achievement for everyone involved.
On March 21, 2025, Ms. Danke’s former and current students continued their inspiring adventures with NASA science by taking a trip to the NASA Wallops Flight Facility in Wallops Island, Virginia. Highlights from this trip included science and technology presentations by personnel from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and Global Precipitation Measurement (GPM) Missions, the Wallops Balloon Program Office, and the Wallops Machine Shop for Fabrication and Testing. The ICESat-2 presentation, in particular, included a discussion on the student-collected tree height data and how the ICESat-2 satellite makes tree height observations from space.
Ms. Danke’s work is a testament to the incredible impact educators can have when they connect classroom learning to authentic scientific discovery. By introducing her students to tools like the GLOBE Observer Trees Tool and facilitating meaningful contributions to NASA science, she opened the door to experiences most students only dream of—from collecting data that supports satellite missions to co-authoring peer-reviewed research and visiting NASA facilities. Stories like this remind us that when students are empowered to be part of real science, the possibilities—for learning, inspiration, and future careers in STEM—are truly limitless.
The GLOBE Observer app, used by Ms. Danke and her students, is made possible by the NASA Earth Science Education Collaborative (NESEC). This free mobile app includes four tools that enable citizen scientists to participate in NASA science: Clouds, Mosquito Habitat Mapper, Land Cover, and Trees. Learn more about ways that you can join and participate in this and other NASA Citizen Science projects. Through these projects, sometimes called “participatory science” projects, volunteers and amateurs have helped make thousands of important scientific discoveries, and they are open to everyone around the world (no citizenship required).
NESEC is supported by NASA under cooperative agreement award number NNX16AE28A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Map of tree height around the Monsignor McClancy Memorial High School from the GLOBE Program’s Visualization System. I know this was an experience they will remember forever and they have already told me that they cannot wait to tell their future children about it. It was wonderful meeting you in person and being on site to get a real sense of what you are working on. The boys were especially fascinated by the last two stops on the tour and appreciated learning a little more about how tree height is measured. Thank you again for this incredible opportunity.”
Ms. Deanna Danke
Monsignor McClancy Memorial High School
Share
Details
Last Updated Apr 10, 2025 Editor NASA Science Editorial Team Location Wallops Flight Facility Related Terms
Science Activation Earth Science Opportunities For Students to Get Involved Explore More
3 min read NASA Science Supports Data Literacy for K-12 Students
Article
1 day ago
3 min read Findings from the Field: A Research Symposium for Student Scientists
Article
2 days ago
34 min read Style Guidelines for ‘The Earth Observer’ Newsletter
Article
2 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Sols 4502-4504: Sneaking Past Devil’s Gate
NASA’s Mars rover Curiosity acquired this image of the terrain around it on April 3, 2025, showing a small ridgeline on the right side, “Devil’s Gate,” and the base of Texoli butte, visible on the left side of the image. Curiosity acquired the image using its Left Navigation Camera on Sol 4500, or Martian day 4,500 of the Mars Science Laboratory mission, at 23:08:35 UTC. NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework
Earth planning date: Friday, April 4, 2025
We continue to make progress driving up Mount Sharp, each day gaining new perspectives on the spectacular, towering buttes surrounding our path. To get to the next canyon we can ascend, we have to swing around the north end of a small ridgeline, “Devil’s Gate,” which is on the right side of the image above.
The blocks scattered around the base of Devil’s Gate are ripe with interesting structures, which motivated the acquisition of an RMI mosaic across the ridge. Those blocks are also inconvenient for driving and parking the rover with all six wheels firmly on the ground, the latter of which is needed to be able to unstow the arm for APXS and MAHLI observations. Our last drive ended with our front wheels not quite on solid ground, so we had to forego arm work this weekend. But as you can imagine with the view around us, Devil’s Gate was not the only feature that the team was excited to image. ChemCam added a second RMI mosaic along the base of “Texoli” butte, which you can see the flank of on the left side of the image above. Mastcam planned a mosaic across an expanse of bedrock that looks like rolling waves frozen in place at “Maidenhair Falls.”
The rocks right in front of the rover were also wonderfully complex in their textures and structures. ChemCam targeted two different textures expressed in the workspace — one across fine layers at “Arroyo Burro” and one across rough, platy, and gray material at “Arroyo Conejo.” Mastcam documented the block containing both these targets with a stereo mosaic that will give us a three-dimensional view of its structures.
We planned a drive to get us further around the base of Devil’s Gate, after which we will acquire an autonomously-targeted ChemCam LIBS raster and early morning Navcam and Mastcam mosaics looking back on the path we have recently traveled. DAN is scheduled for about seven hours of data collecting across the plan, both during science blocks and our drive. The sky gets a lot of attention in this plan with suites of observations taken at two different times — near midday and early morning — to assess variability across the day. Each window of time had Navcam dust-devil and cloud movies, and measurements of the amount of dust in the atmosphere. The early morning block of observations also had multiple cloud movies cover the full sky. REMS and RAD have regular measurements across the sols.
See you Monday, when we are a bit farther past Devil’s Gate!
Share
Details
Last Updated Apr 07, 2025 Related Terms
Blogs Explore More
3 min read Sols 4500-4501: Bedrock With a Side of Sand
Article
1 hour ago
3 min read Sols 4498-4499: Flexing Our Arm Once Again
Article
4 days ago
2 min read Sols 4495-4497: Yawn, Perched, and Rollin’
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Sols 4500-4501: Bedrock With a Side of Sand
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 28, 2025 — Sol 4494, or Martian day 4,494 of the Mars Science Laboratory mission — at 17:06:34 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at Smithsonian National Air and Space Museum
Earth planning date: Wednesday, April 2, 2025
Wow, sol 4500. What an impressive number of sols (Martian days) exploring the Red Planet! This delightfully even sol number made me wonder where the Mars Exploration Rover (MER) Opportunity was at this point in her mission (Opportunity’s twin rover, Spirit, explored Gusev crater on Mars for roughly 2210 sols). As it turns out, Opportunity was driving over fairly smooth terrain on sol 4500 and was approaching a light-toned rounded hill named “Spirit Mound” on the western rim of Endeavour crater in Meridiani Planum.
I am always so impressed and proud when I stop to think about the incredible fleet of rovers we have safely landed and operated on Mars, and the amazing scientific discoveries that have resulted from these missions!
Today I served on science operations as the “keeper of the plan” for the geology and mineralogy theme group. In this role, I assembled the activities in our team planning software for this two-sol plan. Our small plan becomes part of a much larger set of instructions that will be relayed up to the rover later today. Currently, the Curiosity rover is driving up Mount Sharp over broken-up blocks of bedrock and sand through a small canyon en route to the boxwork structures ahead. This bumpy terrain can sometimes make it hard to pass the “Slip Risk Assessment Process” (SRAP) where all six wheels are required to be stable on the ground before we can unstow our robotic arm to use the contact science instruments. After our successful 8-meter drive (about 26 feet) from yestersol we passed SRAP and got to work selecting targets for contact and remote observations.
The team chose to characterize a bedrock target in front of us called “Chuckwalla” using the dust removal tool (DRT), APXS, and MAHLI. ChemCam used its LIBS instrument to analyze the chemistry of a nearby bedrock target with a knobby texture, “Pechacho,” and took a long distance RMI image to study the interesting layering in the “Devil’s Gate” butte. Mastcam assembled an impressive portfolio of observations in this two-sol plan. The team imaged variations in bedrock textures at “Jalama” and “Julian” and documented the nature of the “Mishe Mokwa” ridgeline. In addition, Mastcam imaged darker rocks within a previously acquired mosaic of Devil’s Gate and investigated narrow troughs (small depressions) within the sand in the workspace.
The environmental theme group, with their eye on the sky, included activities to measure the optical depth of the atmosphere, constrain aerosol scattering properties, and observe clouds. A very busy day of planning for sols 4500-4501, with many more to come!
Share
Details
Last Updated Apr 07, 2025 Related Terms
Blogs Explore More
3 min read Sols 4498-4499: Flexing Our Arm Once Again
Article
4 days ago
2 min read Sols 4495-4497: Yawn, Perched, and Rollin’
Article
7 days ago
3 min read Visiting Mars on the Way to the Outer Solar System
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.