Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two participants in the Human Exploration Rover Challenge pedal prepare to pilot their rover across the course as they compete in the 2024 event.
Students from Universidad Católica Boliviana “San Pablo” compete during NASA’s 2024 Human Exploration Rover Challenge. The 2025 competition takes place Friday and Saturday, April 11-12, 2025, at the U.S. Space & Rocket Center’s Aviation Challenge course in Huntsville, Alabama.
NASA

NASA’s annual Human Exploration Rover Challenge returns Friday, April 11, and Saturday, April 12, with student teams competing at the U.S. Space & Rocket Center’s Aviation Challenge course near the agency’s Marshall Space Flight Center in Huntsville, Alabama.

Media are invited to watch as hundreds of students from around the world attempt to navigate a complex obstacle course by piloting a vehicle of their own design and production. Media interested in attending or setting up interviews should contact Taylor Goodwin in the Marshall Office of Communications at 938-210-2891 no later than 2 p.m. Thursday, April 10. 

In addition to the traditional human-powered rover division, this year’s competition expands the challenge to include a remote-control division. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.

Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.

The event is free and open to the public, with rover excursions from 7:30 a.m. to 3 p.m. CDT each day, or until the last rover completes the obstacle course. 

Following the competition, NASA will host an in-person awards ceremony Saturday, April 12, at 5:30 p.m. inside the Space Camp Operations Center at the U.S. Space & Rocket Center. NASA and industry sponsors will present multiple awards highlighting team successes throughout the past eight-months-long engineering design project, including awards for best rover design, best pit crew, best social media presence, and many other accomplishments. 


About the Challenge 
Recognized as NASA’s leading international student challenge, the Human Exploration Rover Challenge aims to put competitors in the mindset of NASA’s Artemis campaign.  Teams pitch an engineering design for a lunar rover which simulates astronauts exploring the lunar surface while overcoming various obstacles. Eligible teams compete to be among the top three finishers in their divisions, and to win multiple awards, including best vehicle design, best rookie team, and more.  

The annual challenge draws hundreds of students from around the world and reflects the goals of NASA’s Artemis campaign, which will establish the first long-term presence on the Moon and pave the way for eventual missions to Mars. 

The event was launched in 1994 as the NASA Great Moonbuggy Race – a collegiate competition to commemorate the 25th anniversary of the Apollo 11 lunar landing. It expanded in 1996 to include high school teams, evolving again in 2014 into the NASA Human Exploration Rover Challenge. Since its inception, more than 15,000 students have participated – with many former students now working in the aerospace industry, including with NASA.   

The Human Exploration Rover Challenge is managed by NASA Marshall’s Southeast Regional Office of STEM Engagement and is one of eight Artemis Student Challenges. NASA’s Office of STEM Engagement uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.  

To learn more about the challenge, visit: 

https://www.nasa.gov/roverchallenge/

Taylor Goodwin 
256-544-0034
Marshall Space Flight Center, Huntsville, Alabama
taylor.goodwin@nasa.gov

Share

Details

Last Updated
Apr 04, 2025
Editor
Beth Ridgeway

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA has announced the winners of it’s 31st Human Exploration Rover Challenge . The annual engineering competition – one of the agency’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. NASA NASA has announced the winning student teams in the 2025 Human Exploration Rover Challenge. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. In the human-powered division, Parish Episcopal School in Dallas, Texas, earned first place in the high school division, and the Campbell University in Buies Creek, North Carolina, captured the college and university title. In the remote-control division, Bright Foundation in Surrey, British Columbia, Canada, earned first place in the middle and high school division, and the Instituto Tecnologico de Santa Domingo in the Dominican Republic, captured the college and university title.
      The annual engineering competition – one of NASA’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. The complete list of 2025 award winners is provided below:
      Human-Powered High School Division 
      First Place: Parish Episcopal School, Dallas, Texas Second Place: Ecambia High School, Pensacola, Florida Third Place: Centro Boliviano Americano – Santa Cruz, Bolivia Human-Powered College/University Division 
      First Place: Campbell University, Buies Creek, North Carolina Second Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Third Place: University of Alabama in Huntsville Remote-Control Middle School/High School Division
      First Place: Bright Foundation, Surrey, British Columbia, Canada Second Place: Assumption College, Brangrak, Bangkok, Thailand Third Place: Erie High School, Erie, Colorado Remote-Control College/University Division
      First Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Second Place: Campbell University, Buies Creek, North Carolina Third Place: Tecnologico de Monterey – Campus Cuernvaca, Xochitepec, Morelos, Mexico Ingenuity Award 
       Queen’s University, Kingston, Ontario, Canada Phoenix Award 
      Human-Powered High School Division: International Hope School of Bangladesh, Uttara, Dhaka, Bangladesh College/University Division: Auburn University, Auburn, Alabama Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Southwest Oklahoma State University, Weatherford, Oklahoma Task Challenge Award 
      Remote-Control Middle School/High School Division: Assumption College, Bangrak, Bangkok, Thailand College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Project Review Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: Campbell University, Buies Creek, North Carolina Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Featherweight Award 
      Campbell University, Buies Creek, North Carolina Safety Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: University of Alabama in Huntsville Crash and Burn Award 
      Universidad de Monterrey, Nuevo Leon, Mexico (Human-Powered Division) Team Spirit Award 
      Instituto Tecnologico de Santo Domingo, Dominican Republic (Human-Powered Division) STEM Engagement Award 
      Human-Powered High School Division: Albertville Innovation School, Albertville, Alabama College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Remote-Control Middle School/High School Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic College/University Division: Tecnologico de Monterrey, Nuevo Leon, Mexico Social Media Award
      Human-Powered High School Division: International Hope School of Bagladesh, Uttara, Dhaka, Bangladesh College/University Division: Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Remote-Control Middle School/High School Division: ATLAS SkillTech University, Mumbai, Maharashtra, India College/University Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic Most Improved Performance Award
      Human-Powered High School Division: Space Education Institute, Leipzig, Germany College/University Division: Purdue University Northwest, Hammond, Indiana Remote-Control Middle School/High School Division: Erie High School, Erie, Colorado College/University Division: Campbell University, Buies Creek, North Carolina Pit Crew Award
      Human-Powered High School Division: Academy of Arts, Career, and Technology, Reno, Nevada College/University Division: Queen’s University, Kingston, Ontario, Canada Artemis Educator Award
      Fabion Diaz Palacious from Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Rookie of the Year
      Deira International School, Dubai, United Arab Emirates

      More than 500 students with 75 teams from around the world participated in the  31st year of the competition. Participating teams represented 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations. Teams were awarded points based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing multiple safety and design reviews with NASA engineers. 
      NASA expanded the 2025 challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. 
      “This student design challenge encourages the next generation of scientists and engineers to engage in the design process by providing innovative concepts and unique perspectives,” said Vemitra Alexander, who leads the challenge for NASA’s Office of STEM Engagement at Marshall. “This challenge also continues NASA’s legacy of providing valuable experiences to students who may be responsible for planning future space missions, including crewed missions to other worlds.”
      The rover challenge is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which will land Americans on the Moon while establishing a long-term presence for science and exploration, preparing for future human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      The competition is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. Since its inception in 1994, more than 15,000 students have participated – with many former students now working at NASA, or within the aerospace industry.    
      To learn more about the Human Exploration Rover Challenge, please visit: 
      https://www.nasa.gov/roverchallenge/home/index.html
      News Media Contact
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Wallops Flight Facility commemorated the start of construction of its new Wallops Island causeway bridge during a groundbreaking ceremony at 10 a.m., Monday, April 14, 2025, on the island.  
      NASA’s Wallops Flight Facility commemorated the start of construction of its new Wallops Island causeway bridge during a groundbreaking ceremony at 10 a.m., Monday, April 14, 2025, on the island. NASA’s Wallops Flight Facility Facility Director David Pierce, NASA’s Goddard Space Flight Center Associate Center Director Ray Rubilotta, and Virgnia Sen. Bill DeSteph attended the ceremony.NASA/Danielle Johnson The ceremony was held at the base of the old Wallops Island causeway bridge. Virgina state Sen. Bill DeSteph attended the groundbreaking, along with staffers from the offices of Sen. Mark Warner, Sen. Tim Kaine, Congresswomen Jen Kiggans, Sen. Chris Van Hollen, and Sen. Angela Alsobrooks. NASA Wallops Facility Director David Pierce and NASA’s Goddard Space Flight Center Associate Center Director Ray Rubilotta attended on behalf of the agency. 
      “Much has changed over the decades, but one thing that has remained the same is our reliance on the causeway bridge as the only means for vehicular access to and from the island,” said Pierce. “Our bridge supports a growing portfolio of commercial launch and government partners. The work we do advances science, technology, and national security missions. This vital work for our nation is enabled by our bridge.” 
      In 2023, NASA Wallops was awarded $103 million in federal funds to fully construct and replace the current 65-year-old causeway bridge that serves as the only vehicular access from NASA Wallops Mainland facilities to its Wallops Island facilities and launch range. After years of exposure to coastal weather and repeated repairs to extend its viability, the existing causeway bridge is reaching the end of its service life.  
      The new causeway bridge, slated for completion in early 2028, will feature a flatter structure, capable of accommodating the increase in heavier loads transported to and from the island in support of an increased cadence of launch operations by NASA, its tenants, and commercial partners. This vital investment in NASA’s infrastructure supports the launch range’s continued growth, strengthening its role as a key asset in Virginia and the nation.   
      An architectural rendering showing the new Wallops Island causeway bridge next to the old causeway bridge.Courtesy of Kokosing NASA is partnering with the Federal Highway Administration to lead the delivery of the design-build project. The project has been awarded to Kokosing Construction Company. 
      For more information on NASA’s Wallops Flight Facility, visit www.nasa.gov/wallops. 
      Share
      Details
      Last Updated Apr 14, 2025 Related Terms
      Wallops Flight Facility
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket, with the company’s Dragon spacecraft atop, stands at Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Nov. 4, 2024, in preparation for the agency’s SpaceX 31st Commercial Resupply Services mission to the International Space Station.Credit: SpaceX NASA and SpaceX are targeting 4:15 a.m. EDT, Monday, April 21, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This is the 32nd SpaceX commercial resupply services mission to the orbiting laboratory for the agency.
      Filled with more than 6,400 pounds of supplies, a SpaceX Dragon spacecraft on a Falcon 9 rocket will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live launch coverage will begin at 3:55 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      NASA’s coverage of Dragon’s arrival to the orbital outpost will begin at 6:45 a.m. Tuesday, April 22, on NASA+. The spacecraft will dock autonomously to the zenith port of the space station’s Harmony module.

      Along with food and essential equipment for the crew, Dragon is delivering a variety of science experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts such as relativity and test worldwide synchronization of precision timepieces.

      The Dragon spacecraft is scheduled to remain at the space station until May, when it will depart and return to Earth with research and cargo, splashing down off the coast of California.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, April 16
      1 p.m. – International Space Station National Lab Science Webinar with the following participants:
      Jennifer Buchli, chief scientist, NASA’s International Space Station Program Michael Roberts, chief scientific officer, International Space Station National Lab Claire Fortenberry, research aerospace engineer, NASA’s Glenn Research Center in Cleveland Yupeng Chen, co-founder, Eascra Biotech Mari Anne Snow, CEO, Eascra Biotech Maj. Travis Tubbs, U.S. Air Force Academy Heath Mills, co-founder, Rhodium Scientific Sarah Wyatt, researcher, Ohio University Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar.
      Audio of the teleconference will stream live on the International Space Station National Lab website.
      Friday, April 18
      3 p.m. – Prelaunch media teleconference (no earlier than one hour after completion of the Launch Readiness Review) with the following participants:
      Zebulon Scoville, deputy manager, Transportation Integration Office, NASA’s International Space Station Program Jennifer Buchli, chief scientist, NASA’s International Space Station Program Sarah Walker, director, Dragon Mission Management, SpaceX Jimmy Taeger, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station
      Media who wish to participate by phone must request dial-in information by 5 p.m. Thursday, April 17, by emailing Kennedy’s newsroom at: ksc-media-accreditat@mail.nasa.gov.
      Audio of the teleconference will stream live on the agency’s website.


      Monday, April 21:
      3:55 a.m. – Launch coverage begins on NASA+.

      4:15 a.m. – Launch
      Tuesday, April 22:
      6:45 a.m. – Arrival coverage begins on NASA+.
      8:20 a.m. – Docking
      NASA website launch coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 3:55 a.m., April 21, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, 
      @ISS National Lab
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-32/
      -end-
      Julian Coltre / Josh Finch
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Florida
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 14, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply Humans in Space International Space Station (ISS) ISS Research SpaceX Commercial Resupply View the full article
    • By NASA
      Credit: NASA NASA’s Office of Small Business Programs will host the U.S. Small Business Administration (SBA) for the first time at its monthly webinar for small businesses at 1 p.m. EDT Wednesday, April 16.
      The webinar, currently open for registration, will focus on a new SBA manufacturing initiative and provide information about SBA’s flagship 7(a) loan program in addition to small business program updates from NASA.
      Participants in the webinar include:
      Casey Swails, deputy associate administrator, NASA Dwight Deneal, assistant administrator, Office of Small Business Programs (OSBP), NASA Headquarters in Washington Charles Williams, program manager, NASA OSBP SBA Administrator Kelly Loeffler Dianna Seaborn, deputy associate administrator, Office of Capital Access, SBA The NASA OSBP Learning Series is a collection of webinars that provide small businesses with an opportunity to receive training and ask questions to experts at the agency. Upcoming webinars are listed on OSBP website. Previous webinars the office has hosted can be found on the OSBP Learning Series Archives.
      For more information about NASA OSBP’s learning series and other outreach events, visit:
      https://www.nasa.gov/osbp
      -end-
      Share
      Details
      Last Updated Apr 14, 2025 LocationNASA Headquarters Related Terms
      General NASA Headquarters Office of Small Business Programs (OSBP) View the full article
    • By NASA
      NASA’s Lucy spacecraft is 6 days and less than 50 million miles (80 million km) away from its second close encounter with an asteroid; this time, the small main belt asteroid Donaldjohanson.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio.
      NASA/Dan Gallagher This upcoming event represents a comprehensive “dress rehearsal” for Lucy’s main mission over the next decade: the exploration of multiple Trojan asteroids that share Jupiter’s orbit around the Sun. Lucy’s first asteroid encounter – a flyby of the tiny main belt asteroid Dinkinesh and its satellite, Selam, on Nov. 1, 2023 – provided the team with an opportunity for a systems test that they will be building on during the upcoming flyby.
      Lucy’s closest approach to Donaldjohanson will occur at 1:51pm EDT on April 20, at a distance of 596 miles (960 km). About 30 minutes before closest approach, Lucy will orient itself to track the asteroid, during which its high-gain antenna will turn away from Earth, suspending communication. Guided by its terminal tracking system, Lucy will autonomously rotate to keep Donaldjohanson in view. As it does this, Lucy will carry out a more complicated observing sequence than was used at Dinkinesh. All three science instruments – the high-resolution greyscale imager called L’LORRI, the color imager and infrared spectrometer called L’Ralph, and the far infrared spectrometer called L’TES – will carry out observation sequences very similar to the ones that will occur at the Trojan asteroids.
      However, unlike with Dinkinesh, Lucy will stop tracking Donaldjohanson 40 seconds before the closest approach to protect its sensitive instruments from intense sunlight.
      “If you were sitting on the asteroid watching the Lucy spacecraft approaching, you would have to shield your eyes staring at the Sun while waiting for Lucy to emerge from the glare. After Lucy passes the asteroid, the positions will be reversed, so we have to shield the instruments in the same way,” said encounter phase lead Michael Vincent of Southwest Research Institute (SwRI) in Boulder, Colorado. “These instruments are designed to photograph objects illuminated by sunlight 25 times dimmer than at Earth, so looking toward the Sun could damage our cameras.” 
      Fortunately, this is the only one of Lucy’s seven asteroid encounters with this challenging geometry. During the Trojan encounters, as with Dinkinesh, the spacecraft will be able to collect data throughout the entire encounter.
      After closest approach, the spacecraft will “pitch back,” reorienting its solar arrays back toward the Sun. Approximately an hour later, the spacecraft will re-establish communication with Earth.
      “One of the weird things to wrap your brain around with these deep space missions is how slow the speed of light is,” continued Vincent. “Lucy is 12.5 light minutes away from Earth, meaning it takes that long for any signal we send to reach the spacecraft. Then it takes another 12.5 minutes before we get Lucy’s response telling us we were heard. So, when we command the data playback after closest approach, it takes 25 minutes from when we ask to see the pictures before we get any of them to the ground.”
      Once the spacecraft’s health is confirmed, engineers will command Lucy to transmit the science data from the encounter back to Earth, which is a process that will take several days.
      Donaldjohanson is a fragment from a collision 150 million years ago, making it one of the youngest main belt asteroids ever visited by a spacecraft. 
      “Every asteroid has a different story to tell, and these stories weave together to paint the history of our solar system,” said Tom Statler, Lucy mission program scientist at NASA Headquarters in Washington. “The fact that each new asteroid we visit knocks our socks off means we’re only beginning to understand the depth and richness of that history. Telescopic observations are hinting that Donaldjohanson is going to have an interesting story, and I’m fully expecting to be surprised – again.”
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, designed and built the L’Ralph instrument and provides overall mission management, systems engineering and safety and mission assurance for Lucy. Hal Levison of SwRI’s office in Boulder, Colorado, is the principal investigator. SwRI, headquartered in San Antonio, also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the original orbital trajectory and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University in Tempe, Arizona, designed and build the L’TES (Lucy Thermal Emission Spectrometer) instrument. Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      By Katherine Kretke, Southwest Research Institute

      Media Contact:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Apr 14, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Lucy Goddard Space Flight Center Planetary Science Explore More
      4 min read New Modeling Assesses Age of Next Target Asteroid for NASA’s Lucy
      Article 4 weeks ago 3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
      Article 2 months ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
      Article 2 years ago View the full article
  • Check out these Videos

×
×
  • Create New...