Jump to content

Hubble Space Telescope Searches for a Historic Nova in Globular Cluster M14


HubbleSite

Recommended Posts

low_STSCI-H-p-9012a-k1340x520.png

NASA's Hubble Space Telescope (HST) has successfully completed the first stage of a cosmic detective hunt for a rare star, called a nova, which erupted half a century ago. HST's needle-in-the-haystack search has provided astronomers with an unprecedented view of the crowded inner region of a globular star cluster located about 70,000 light-years away.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Nick Hague with the International Space Station’s amateur or ham radio equipment during his current mission (right) and a previous flight five years ago (left)NASA How it started versus how it’s going for astronaut Nick Hague with ISS Ham Radio on the space station.
      Since November 2000, crew members like Hague have used ham radio to communicate with people on Earth through this educational program, also known as Amateur Radio on the International Space Station or ARISS. So far, there have been more than 1,700 events, directly engaging students and listeners from 49 U.S. states, 63 countries, and all seven continents. Students study the space station, radio waves, amateur radio technology, and related topics before their call from space, which encourages interest in STEM.
      Now through Nov 17, 2024, ARISS is accepting applications from formal and informal educational institutions and organizations that want to host events in summer or fall of 2025. There is no charge for these calls from space, although host locations may incur some equipment-related costs. Local amateur radio clubs help hosts prepare for their contacts.
      Read about how ISS Ham Radio and other station programs inspire students.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      View the full article
    • By NASA
      5 min read
      NASA to Launch Innovative Solar Coronagraph to Space Station
      NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution.
      Launching in November 2024 aboard SpaceX’s 31st commercial resupply services mission, CODEX will be robotically installed on the exterior of the space station. As a solar coronagraph, CODEX will block out the bright light from the Sun’s surface to better see details in the Sun’s outer atmosphere, or corona.
      In this animation, the CODEX instrument can be seen mounted on the exterior of the International Space Station. For more CODEX imagery, visit https://svs.gsfc.nasa.gov/14647. CODEX Team/NASA “The CODEX instrument is a new generation solar coronagraph,” said Jeffrey Newmark, principal investigator for the instrument and scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has a dual use — it’s both a technology demonstration and will conduct science.”
      This coronagraph is different from prior coronagraphs that NASA has used because it has special filters that can provide details of the temperature and speed of the solar wind. Typically, a solar coronagraph captures images of the density of the plasma flowing away from the Sun. By combining the temperature and speed of the solar wind with the traditional density measurement, CODEX can give scientists a fuller picture of the wind itself.
      “This isn’t just a snapshot,” said Nicholeen Viall, co-investigator of CODEX and heliophysicist at NASA Goddard. “You’re going to get to see the evolution of structures in the solar wind, from when they form from the Sun’s corona until they flow outwards and become the solar wind.”
      The CODEX instrument will give scientists more information to understand what heats the solar wind to around 1.8 million degrees Fahrenheit — around 175 times hotter than the Sun’s surface — and sends it streaming out from the Sun at almost a million miles per hour.
      Team members for CODEX pose with the instrument in a clean facility during initial integration of the coronagraph with the pointing system. CODEX Team/NASA This launch is just the latest step in a long history for the instrument. In the early 2000s and in August 2017, NASA scientists ran ground-based experiments similar to CODEX during total solar eclipses. A coronagraph mimics what happens during a total solar eclipse, so this naturally occurring phenomena provided a good opportunity to test instruments that measure the temperature and speed of the solar wind.
      In 2019, NASA scientists launched the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) experiment. A balloon the size of a football field carried the CODEX prototype 22 miles above Earth’s surface, where the atmosphere is much thinner and the sky is dimmer than it is from the ground, enabling better observations. However, this region of Earth’s atmosphere is still brighter than outer space itself.
      “We saw enough from BITSE to see that the technique worked, but not enough to achieve the long-term science objectives,” said Newmark.
      Now, by installing CODEX on the space station, scientists will be able to view the Sun’s corona without fighting the brightness of Earth’s atmosphere. This is also a beneficial time for the instrument to launch because the Sun has reached its solar maximum phase, a period of high activity during its 11-year cycle.
      “The types of solar wind that we get during solar maximum are different than some of the types of wind we get during solar minimum,” said Viall. “There are different coronal structures during this time that lead to different types of solar wind.”
      The CODEX coronagraph is shown during optical alignment and assembly. CODEX Team//NASA This coronagraph will be looking at two types of solar wind. In one, the solar wind travels directly outward from our star, pulling the magnetic field from the Sun into the heliosphere, the bubble that surrounds our solar system. The other type of solar wind forms from magnetic field lines that are initially closed, like a loop, but then open up.
      These closed field lines contain hot, dense plasma. When the loops open, this hot plasma gets propelled into the solar wind. While these “blobs” of plasma are present throughout all of the solar cycle, scientists expect their location to change because of the magnetic complexity of the corona during solar maximum. The CODEX instrument is designed to see how hot these blobs are for the first time.
      The coronagraph will also build upon research from ongoing space missions, such as the joint ESA (European Space Agency) and NASA mission Solar Orbiter, which also carries a coronagraph, and NASA’s Parker Solar Probe. For example, CODEX will look at the solar wind much closer to the solar surface, while Parker Solar Probe samples it a little farther out. Launching in 2025, NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will make 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind.
      By comparing these findings, scientists can better understand how the solar wind is formed and how the solar wind changes as it travels farther from the Sun. This research advances our understanding of space weather, the conditions in space that may interact with Earth and spacecraft.
      “Just like understanding hurricanes, you want to understand the atmosphere the storm is flowing through,” said Newmark. “CODEX’s observations will contribute to our understanding of the region that space weather travels through, helping improve predictions.”
      The CODEX instrument is a collaboration between NASA’s Goddard Space Flight Center and the Korea Astronomy and Space Science Institute with additional contribution from Italy’s National Institute for Astrophysics.
      By Abbey Interrante
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 30, 2024 Related Terms
      Coronal Diagnostic Experiment (CODEX) Goddard Space Flight Center Heliophysics Heliophysics Division International Space Station (ISS) Science Mission Directorate Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing


      Article


      1 day ago
      2 min read New Project Invites You To Do Martian Cloud Science with NASA


      Article


      1 day ago
      2 min read Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA Lee esta historia en Español aquí.
      In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.
      Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.
      “The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”
      Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.
      “One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”
      “I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”
      The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.
      Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share
      Details
      Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory What We Do Explore More
      3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 18 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aircraft Flown at Armstrong
      Armstrong People
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In this new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between 5 and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect — meaning the worst place to be for a would-be planetary system — is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of the Cygnus OB2 star cluster, which resembles a night sky blanketed in orange, purple, and grey clouds.
      The center of the square image is dominated by purple haze. This haze represents diffuse X-ray emissions, and young stars, detected by the Chandra X-ray observatory. Surrounding the purple haze is a mottled, streaky, brick orange cloud. Another cloud resembling a tendril of grey smoke stretches from our lower left to the center of the image. These clouds represent relatively cool dust and gas observed by the Spitzer Space Telescope.
      Although the interwoven clouds cover most of the image, the thousands of stars within the cluster shine through. The lower-mass stars present as tiny specks of light. The massive stars gleam, some with long refraction spikes.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      Learn Home Watch How Students Help NASA… Citizen Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth
      Since 2015, students from across the USA have been partnering with scientists at NASA to advance research on growing plants in space, ultimately to feed astronauts on long-distance space missions, as part of Fairchild Tropical Botanic Garden’s Growing Beyond Earth project, which is now in its 9th year. This classroom-based citizen science project for 6th-12th grade students includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the Vegetable Production System (VEGGIE) on the International Space Station.
      This year, 8000+ students from 400+ schools are testing new edible plant varieties, studying radiation effects on growth, exploring the perfect light spectrum for super-sized space radishes, and experimenting with cosmic soil alternatives.
      Watch these South Florida students show us how it’s done.
      NASA citizen science projects are open to everyone around the world, not limited to U.S. citizens or residents. They are collaborations between scientists and interested members of the public. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. More than 450 NASA citizen scientists have been named as co-authors on refereed scientific publications. Explore opportunities for you to get involved and do NASA science: https://science.nasa.gov/citizen-science/
      The Growing Beyond Earth project is supported by NASA under cooperative agreement award number 80NSSC22MO125 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Niki Jose Share








      Details
      Last Updated Oct 28, 2024 Editor NASA Science Editorial Team Related Terms
      Citizen Science Opportunities For Students to Get Involved Plant Biology Science Activation Vegetable Production System (VEGGIE) Explore More
      3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions


      Article


      3 days ago
      2 min read Educator Night at the Museum of the North: Activating Science in Fairbanks Classrooms


      Article


      4 days ago
      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...