Members Can Post Anonymously On This Site
Saturn
-
Similar Topics
-
By NASA
With the historic first international space docking mission only six months away, preparations on the ground for the Apollo-Soyuz Test Project (ASTP) intensified. At NASA’s Kennedy Space Center (KSC) in Florida, workers in the Vehicle Assembly Building (VAB) stacked the rocket for the mission, the final Saturn rocket assembled for flight. In the nearby Manned Spacecraft Operations Building (MSOB), the Apollo prime crew of Commander Thomas Stafford, Command Module Pilot Vance Brand, and Docking Module Pilot Donald “Deke” Slayton, and their backups Alan Bean, Ronald Evans, and Jack Lousma conducted vacuum chamber tests of the Command Module (CM), the final Apollo spacecraft prepared for flight.
Inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers attach fins to the Saturn IB’s first stage. In the VAB, workers secure the first stage of the Saturn IB rocket onto the milk stool, perched on Mobile Launcher-1. Workers lift the second stage of the Saturn IB rocket prior to mating with the first stage. Workers lower a boilerplate Apollo spacecraft onto the Saturn IB rocket. The Saturn IB rocket, serial number SA-210, used for ASTP had a lengthy history. Contractors originally built its two stages in 1967, at a time when NASA planned many more Saturn IB flights to test Apollo spacecraft components in Earth orbit in preparation for the Moon landing. By 1968, however, after four uncrewed Saturn IB launches, only one launched a crew, Apollo 7. Four more Saturn IBs remained on reserve to launch crews as part of the Apollo Applications Program, renamed Skylab in 1970. Without an immediate mission, the two stages of SA-210 entered long-term storage in 1967. Workers later modified and refurbished the stages for ASTP before shipping them to KSC. The first stage arrived in April 1974 and the second stage in November 1972.
On Jan. 13, 1975, inside the cavernous VAB, workers stacked the Saturn IB rocket’s first stage onto Mobile Launcher-1 (ML-1), modified from its use to launch Saturn V rockets during the Apollo program with the addition of the milk stool pedestal. The milk stool, a 128-foot tall platform, allowed the Saturn IB to use the same Launch Umbilical Tower as the much larger Saturn V rocket at Launch Complex 39. The next day, workers lowered the second stage onto the first, followed by the Instrument Unit two days later. Finally, on Jan. 17 workers topped off the rocket with a boilerplate Apollo spacecraft while engineers continued testing the flight article in the MSOB.
The ASTP Apollo Command and Service Modules arrive at NASA’s Kennedy Space Center (KSC) in Florida. The ASTP Command Module arrives in KSC’s Manned Spacecraft Operations Building. The Command and Service Modules – CSM-111 – arrived at KSC from the Rockwell International plant in Downey, California, on Sept. 8, 1974, by C-5A Galaxy cargo plane. Rockwell had finished building the spacecraft in March 1970 and placed it in storage until July 1972. Modifications for ASTP took place between August 1972 and August 1974, following which Rockwell shipped the spacecraft to KSC. The sign on the shipping container bore the legend “From A to Soyuz – Apollo/Soyuz – Last and the Best.” Workers at KSC towed the modules to the MSOB for inspection and checkout, joined the two modules, and placed the combined spacecraft into a vacuum chamber.
The prime Apollo crew of Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton suit up in preparation for an altitude chamber test in the Command Module (CM). The astronauts inside the CM in the altitude chamber. In the MSOB, the prime and backup ASTP crews conducted tests of their spacecraft in an altitude chamber. After both crews completed simulated runs in December 1974, the prime crew of Stafford, Brand, and Slayton suited up, entered the CM inside the chamber, closed the hatch, and conducted an actual test on Jan. 14, with the chamber simulating altitudes of up to 220,000 feet. Two days later, the backup crew of Bean, Evans, and Lousma completed a similar test.
he backup Apollo crew of Alan Bean, left, Ronald Evans, and Jack Lousma suit up in preparation for an altitude chamber test in the Command Module (CM). Workers assist backup crewmember Lousma into the CM. To solve the problem of the Apollo and Soyuz spacecraft operating at different atmospheric pressures and compositions and using incompatible docking mechanisms, engineers designed a Docking Module (DM) that acted as both an airlock and a transfer tunnel and a Docking System (DS) that allowed the two nations’ spacecraft to physically join in space. NASA contracted with Rockwell International to build the DM. Engineers equipped one end of the DM with the standard Apollo probe-and-drogue docking mechanism and the other end with the androgynous system that linked up with its opposite half installed on the modified Soyuz spacecraft. During launch, the DM rested inside the Spacecraft Lunar Module (LM) Adaptor (SLA) atop the rocket’s upper stage, much like the LM during Apollo flights. Once in orbit, the astronauts separated the CSM from the upper stage, turned the spacecraft around, docked with the DM and pulled it free.
Workers lower the DM into Chamber B in the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston. Workers lower the DM into Chamber B in the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston. After extensive vacuum testing in Chamber B of the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston, the flight DM arrived at KSC on Oct. 29, 1974, and workers prepared it for more testing in a vacuum chamber in the MSOB. The flight DS arrived at KSC on Jan. 3, 1975, and two weeks later workers installed it on the DM. On Jan. 27, engineers lowered the DM onto the CM in the altitude chamber to conduct a mechanical docking test. Engineers conducted 10 days of joint tests of television and audio equipment to ensure systems compatibility.
Workers conduct a docking test of the Docking Module with the Command Module at NASA’s Kennedy Space Center in Florida. NASA support astronaut Robert Overmyer, right, works with engineers during compatibility testing. To be continued…
Major events around the world in January 1975:
January 5 – Musical The Wiz opens on Broadway, runs for 1,672 performances.
January 6 – The game show Wheel of Fortune debuts on NBC.
January 8 – Ella Grasso of Connecticut becomes the first elected female governor in the U.S.
January 11 – The S-II second stage of the Saturn V rocket that launched Skylab reenters the Earth’s atmosphere over the Indian Ocean.
January 12 – The Pittsburg Steelers beat the Minnesota Vikings in Super Bowl IX, played in Tulane Stadium in New Orleans.
January 15 – Space Mountain opens at Disney World in Orlando.
January 18 – The Jeffersons premieres on CBS.
January 22 – Launch of the Landsat-2 Earth resources monitoring satellite.
January 30 – Ernő Rubik applies for a patent in Hungary for his Magic Cube, later known as Rubik’s Cube.
View the full article
-
By NASA
On Aug. 29, 1789, German-born British astronomer William Herschel observed a tiny bright dot orbiting around Saturn. His son later named the object Enceladus. Because of its distance from Earth and proximity to bright Saturn, for the next two centuries little remained known about Enceladus other than its size, orbital parameters, and that it held the honor as the most reflective body in the solar system. It took the Voyager flybys through the Saturn system in the early 1980s and especially the detailed observations between 2005 and 2015 by the Saturn orbiter Cassini to reveal Enceladus as a truly remarkable world, interacting with Saturn and its rings. Harboring a subsurface ocean of salty water, Enceladus may possibly be hospitable to some forms of life.
Left: Portrait (1785) of William Herschel by Lemuel Francis Abbott. Image credit: courtesy National Portrait Gallery, London. Middle: Drawing of Herschel’s 40-foot telescope. Right: Portrait (1867) of John Herschel by Julia Margaret Cameron. Image credit: Metropolitan Museum of Art.
Herschel’s previous astronomical accomplishments include the discovery of Uranus in 1781 and two of its moons, Oberon and Titania, in 1787. He also catalogued numerous objects he termed nebulae, but remained frustrated by the limitations of telescopes of his age. He began to build ever larger instruments, finally building the world’s largest reflecting telescope of its time. At 40 feet long, and with a 49-inch diameter primary mirror weighing a ton, it looked impressive although its optical characteristics did not advance the field as much as he had hoped. Nevertheless, Herschel used this telescope to observe Saturn and its five known moons, looking for others. On Aug. 28, 1789, he observed a bright point orbiting the planet and believed he had discovered a sixth moon. On Sept. 17, he discovered a seventh moon orbiting the ringed planet. He did not name these moons, that task fell to his son John who believed Saturn’s moons should be named after the Titans of Greek mythology. He named the first moon Enceladus and the second Mimas.
Left: Relative sizes of Earth, Earth’s Moon, and Enceladus. Right: Best Voyager 2 image of Enceladus.
For nearly two centuries, Enceladus remained not much more than a point of light orbiting Saturn, just another icy moon in the outer solar system. Astronomers estimated its diameter at around 310 miles and its orbital period around Saturn at 1.4 days, with a mean distance from the planet’s center of 148,000 miles. Enceladus has the distinction as one of the brightest objects in the solar system, reflecting almost 100 percent of the Sun’s light. Unusual telescope observations during the 20th century showed an increase in brightness on its trailing side, with no known explanation at the time. In 1966, astronomers discovered a diffuse ring around Saturn, the E-ring, and found in 1980 that its density peaked near Enceladus. The Voyager 1 spacecraft flew within 125,570 miles of Enceladus during its passage through the Saturn system on Nov. 12, 1980. Its twin Voyager 2 came within 54,000 miles on Aug. 26, 1981, during its flyby. These close encounters enabled the spacecraft to return the first detailed images of the moon, showing various terrains, including heavily cratered areas as well as smooth crater-free areas, indicating a very young surface.
Left: False color image of Enceladus from Cassini showing the tiger stripes at bottom. Middle: Limb view of Enceladus showing plumes of material emanating from its surface. Right: Cassini image of Enceladus backlit by the Sun showing the fountain-like plumes of material.
After the Cassini spacecraft entered orbit around Saturn in July 2004, our understanding of Enceladus increased tremendously, and of course raised new questions. Between 2005 and 2015, Cassini encountered Enceladus 22 times, turning its various instruments on the moon to unravel its secrets. It noted early on that the moon emitted gas and dust or ice particles and that they interacted with the E-ring. Images of the moon’s south polar region revealed cracks on the surface and other instruments detected a huge cloud of water vapor over the area. The moon likely had a liquid subsurface and some of this material reached the outside through these cracks. Scientists named the most prominent of these areas “tiger stripes” and later observations confirmed them as the source of the most prominent jets. During the most daring encounter in October 2015, Cassini came within 30 miles of the Enceladus’ surface, flying through the plume of material emanating from the moon. Analysis of the plumes revealed an organic brew of volatile gases, water vapor, ammonia, sodium salts, carbon dioxide, and carbon monoxide. These plumes replenish Saturn’s E-ring, and some of this material enters Saturn’s upper atmosphere, an interaction unique in the solar system. More recently, the James Webb Space Telescope imaged the water vapor plume emanating from Enceladus’ south pole, extending out 40 times the size of the moon itself. The confirmation of a subsurface ocean of salty water has led some scientists to postulate that Enceladus may be hospitable to some forms of life, making it a potential target for future exploration. Enceladus may yet have more surprises, even as scientists continue to pore over the data returned by Cassini.
Left: James Webb Space Telescope image of a water vapor plume emanating from Enceladus. Right: Illustration of the interaction of Enceladus and Saturn’s E-ring.
Map of Enceladus based on imagery from Cassini, turning our view of Enceladus from a small point of light into a unique world with its own topography.
Events in world history in 1789:
January 29 – Vietnamese emperor Quang Trung defeats Chinese Qing forces at Ngọc Hồi-Đống Đa in one of the greatest military victories in Vietnamese history.
March 10 – In Japan, the Menashi-Kunashir rebellion begins between the Ainu people and the Japanese.
April 7 – Selim III succeeds Abdul Hamid I as Sultan of the Ottoman Empire.
April 28 – Aboard the HMS Bounty in the Pacific Ocean, Fletcher Christian leads the mutiny against Captain William Bligh.
April 30 – Inauguration of George Washington as the first President of the United States of America.
July 14 – Citizens storm The Bastille fortress in Paris during the French Revolution.
September 15 – Birth of American writer James Fenimore Cooper in Burlington, New Jersey.
December 11 – Founding of the University of North Carolina, the oldest public university in the United States.
Explore More
11 min read 15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew
Article 1 day ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
Article 2 days ago 12 min read 55 Years Ago: Apollo 11 Astronauts End Quarantine, Feted from Coast to Coast
Article 1 week ago View the full article
-
By NASA
NASA/JPL/Space Science Institute The Cassini-Huygens spacecraft captured this last “eyeful” of Saturn and its rings on March 27, 2004, as it continued its way to orbit insertion. This natural color image shows the color variations between atmospheric bands and features in the southern hemisphere of Saturn, subtle color differences across the planet’s middle B ring, as well as a bright blue sliver of light in the northern hemisphere – sunlight passing through the Cassini Division in Saturn’s rings and being scattered by the cloud-free upper atmosphere.
Cassini-Huygens, at 12,593 pounds one of the heaviest planetary probes ever, was launched on Oct. 15, 1997, on a Titan IVB/Centaur rocket from Cape Canaveral Air Force Station in Florida. Although that was the most powerful expendable launch vehicle available, it wasn’t powerful enough to send the massive Cassini-Huygens on a direct path to Saturn. Instead, the spacecraft relied on several gravity assist maneuvers to achieve the required velocity to reach the ringed planet. This seven-year journey took it past Venus twice, the Earth once, and Jupiter once, gaining more velocity with each flyby for the final trip to Saturn.
On July 1, 2004, with the Huygens lander still attached, Cassini fired its main engine for 96 minutes and entered an elliptical orbit around Saturn, becoming the first spacecraft to do so. Thus began an incredible 13-year in-depth exploration of the planet, its rings and its satellites, with scores of remarkable discoveries.
The Cassini mission ended on Saturn in 2015, when operators deliberately plunged the spacecraft into the planet to ensure Saturn’s moons remain pristine for future exploration.
Image Credit: NASA/JPL/Space Science Institute
View the full article
-
By European Space Agency
A fresh, icy crust hides a deep, enigmatic ocean. Plumes of water burst through cracks in the ice, shooting into space. An intrepid lander collects samples and analyses them for hints of life.
ESA has started to turn this scene into a reality, devising a mission to investigate an ocean world around either Jupiter or Saturn. But which moon should we choose? What should the mission do exactly? A team of expert scientists has delivered their findings.
View the full article
-
By European Space Agency
A fresh, icy crust hides a deep, enigmatic ocean. Plumes of water burst through cracks in the ice, shooting into space. An intrepid lander collects samples and analyses them for hints of life.
ESA has started to turn this scene into a reality, devising a mission to investigate an ocean world around either Jupiter or Saturn. But which moon should we choose? What should the mission do exactly? A team of expert scientists has delivered their findings.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.